宇宙の進化と素粒子模型

令和1年度宇宙線研究所共同利用研究成果発表会 宇宙線研究所理論グループ 伊部昌宏

 東大宇宙線研 : 川崎、伊部、他

 名古屋大: 久野
 京都大学: 瀬波

 金沢大: 青木
 東北大: 高橋

 KEK: 郡
 神奈川大: 粕谷

 (合計21名)

国内旅費:10万円

1) Gauge Independence of Induced Gravitational Waves.

By Keisuke Inomata, Takahiro Terada. [arXiv:1912.00785 [gr-qc]].

<u>DANCE: Dark matter Axion search with riNg Cavity Experiment.</u> By Yuta Michimura et al.. [arXiv:1911.05196 [physics.ins-det]].

3) New Type of String Solutions with Long Range Forces.

By Takashi Hiramatsu, Masahiro Ibe, Motoo Suzuki. [arXiv:1910.14321 [hep-ph]].

4) Oscillon of Ultra-Light Axion-like Particle.

By Masahiro Kawasaki, Wakutaka Nakano, Eisuke Sonomoto. [arXiv:1909.10805 [astro-ph.CO]].

5) A Dynamical Solution to the Axion Domain Wall Problem.

By Masahiro Ibe, Shin Kobayashi, Motoo Suzuki, Tsutomu T. Yanagida. [arXiv:1909.01604 [hep-ph]].

6) Fragileness of Exact I-ball/Oscillon.

By Masahiro Ibe, Masahiro Kawasaki, Wakutaka Nakano, Eisuke Sonomoto. [arXiv:1908.11103 [hep-ph]].

7) Oscillating Composite Asymmetric Dark Matter.

By Masahiro Ibe, Shin Kobayashi, Ryo Nagai, Wakutaka Nakano. [arXiv:1907.11464 [hep-ph]].

8) Charged black holes in non-linear Q-clouds with O(3) symmetry.

By Jeong-Pyong Hong, Motoo Suzuki, Masaki Yamada. [arXiv:1907.04982 [gr-qc]].

9) Baryon-Dark Matter Coincidence in Mirrored Unification.

By Masahiro Ibe, Ayuki Kamada, Shin Kobayashi, Takumi Kuwahara, Wakutaka Nakano. [arXiv:1907.03404 [hep-ph]]. <u>10.1103/PhysRevD.100.075022</u>. Phys.Rev. D100 (2019) no.7, 075022.

10) Formation of supermassive primordial black holes by Affleck-Dine mechanism. By Masahiro Kawasaki, Kai Murai. [arXiv:1907.02273 [astro-ph.CO]]. 10.1103/PhysRevD.100.103521. Phys.Rev. D100 (2019) no.10, 103521.

11) Constraining dark matter annihilation with HSC Low Surface Brightness Galaxies.

By Daiki Hashimoto, Oscar Macias, Atsushi J. Nishizawa, Kohei Hayashi, Masahiro Takada, Masato Shirasaki, Shin'ichiro Ando. [arXiv:1906.06701 [astro-ph.CO]].

12) Novel GUT with apparently complete SU(5) multiplets.

By Masahiro Ibe, Satoshi Shirai, Motoo Suzuki, Tsutomu T. Yanagida. [arXiv:1906.02977 [hep-ph]]. <u>10.1103/PhysRevD.100.055024</u>. Phys.Rev. D100 (2019) no.5, 055024.

13) Enhancement of Gravitational Waves Induced by Scalar Perturbations due to a Sudden Transition from an Early Matter Era to the Radiation Era.

By Keisuke Inomata, Kazunori Kohri, Tomohiro Nakama, Takahiro Terada. [arXiv:1904.12879 [astro-ph.CO]]. <u>10.1103/PhysRevD.100.043532</u>. Phys.Rev. D100 (2019) no.4, 043532.

14) Gravitational Waves Induced by Scalar Perturbations during a Gradual Transition from

an Early Matter Era to the Radiation Era. By Keisuke Inomata, Kazunori Kohri, Tomohiro Nakama, Takahiro Terada. [arXiv:1904.12878 [astro-ph.CO]]. <u>10.1088/1475-7516/2019/10/071</u>. JCAP 1910 (2019) no.10, 071.

15) <u>Fast-Rolling Relaxion.</u> By Masahiro Ibe, Yutaro Shoji, Motoo Suzuki. [arXiv:1904.02545 [hep-ph]]. <u>10.1007/JHEP11(2019)140</u>. JHEP 1911 (2019) 140.

16) Muon \$g-2\$ in Split-Family SUSY in light of LHC Run II.

By Masahiro Ibe, Motoo Suzuki, Tsutomu T. Yanagida, Norimi Yokozaki. [arXiv:1903.12433 [hep-ph]]. <u>10.1140/epjc/s10052-019-7186-5</u>. Eur.Phys.J. C79 (2019) no.8, 688.

17) More about Q-ball with elliptical orbit.
By Fuminori Hasegawa, Jeong-Pyong Hong, Motoo Suzuki.
[arXiv:1903.07281 [hep-ph]].
<u>10.1016/j.physletb.2019.135001</u>.
Phys.Lett. B798 (2019) 135001.

18) Effect of nonlinearity between density and curvature perturbations on the primordial black hole formation. By Masahiro Kawasaki, Hiromasa Nakatsuka. [arXiv:1903.02994 [astro-ph.CO]]. 10.1103/PhysRevD.99.123501. Phys.Rev. D99 (2019) no.12, 123501.

19) Axion Dark Matter Search with Interferometric Gravitational Wave Detectors.
By Koji Nagano, Tomohiro Fujita, Yuta Michimura, Ippei Obata.
[arXiv:1903.02017 [hep-ph]].
<u>10.1103/PhysRevLett.123.111301</u>.
Phys.Rev.Lett. 123 (2019) no.11, 111301.

20) <u>Non-sphericity of ultralight axion dark matter haloes in the Galactic dwarf spheroidal galaxies.</u>
By Kohei Hayashi, Ippei Obata.
[arXiv:1902.03054 [astro-ph.CO]].
10.1093/mnras/stz2950.

21) Decay of I-ball/Oscillon in Classical Field Theory.

By Masahiro Ibe, Masahiro Kawasaki, Wakutaka Nakano, Eisuke Sonomoto. [arXiv:1901.06130 [hep-ph]]. <u>10.1007/JHEP04(2019)030</u>. JHEP 1904 (2019) 030.

GUTの再考

Phys.Rev.D100.055024(2019).

Masahiro Ibe, Satoshi Shirai, Motoo Suzuki, Tsutomu T. Yanagida.

Higgs boson has been discovered

→ We understand the origins of the quark, lepton Z, W masses !

Quarks & Leptons in the Standard Model

	SU(3)	SU(2)	U(1)	
$q_{L}^{1,2,3} = \begin{pmatrix} u_{L}^{1,2,3} \\ d_{L}^{1,2,3} \end{pmatrix}$	3	2	1/6	
$\overline{U}_{R}^{1,2,3}$	3*	-	-2/3	
$\overline{D}_{R}^{1,2,3}$	3*	-	1/3	x 3-generations
$I_{L} = \begin{pmatrix} \boldsymbol{\nu}_{L} \\ \boldsymbol{e}_{L} \end{pmatrix}$	_	2	-1/2	
\overline{E}_R	-	-	1	

→ They look complicated and not very beautiful...

Miraculous Unification

✓ $SU(3) \times SU(2) \times U(1)$ gauge theory $\rightarrow SU(5)$ gauge theory?

(Minimal embedding into a non-abelian group)

Quarks & Leptons are also unified into two representations!

$$\boldsymbol{\psi(5^*)} = \begin{pmatrix} \overline{D}_R^1 \\ \overline{D}_R^2 \\ \overline{D}_R^3 \\ \overline{D}_R^3 \\ L_L^1 \\ L_L^2 \end{pmatrix} \qquad \boldsymbol{\psi(10)} = \begin{pmatrix} 0 & \overline{U}_R^3 & -\overline{U}_R^2 & U_L^1 & D_L^1 \\ -\overline{U}_R^3 & 0 & \overline{U}_R^1 & U_L^2 & D_L^2 \\ \overline{U}_R^2 & -\overline{U}_R^1 & 0 & U_L^3 & D_L^3 \\ -U_L^1 & -U_L^2 & -U_L^3 & 0 & \overline{E}_R \\ -D_L^1 & -D_L^2 & -D_L^3 & -\overline{E}_R & 0 \end{pmatrix}$$

x 3-generations

It should not be an accident !

Deterioration...

Gauge coupling constants tend to unify but not very precise...

Although it is basically consistent with the unification but seems not precise enough...

Too rapid proton decay

$$L \sim \frac{g_{GUT^2}}{M_{GUT^2}} \left[(\bar{5}\ 10)^{\dagger} (\bar{5}\ 10) + (5\ 10)^{\dagger} (10\ 10) \right]$$

 $\tau(p \rightarrow e + \pi^0) \sim 10^{26} \text{ years x } (M_{GUT}/g_{GUT}/10^{14} \text{GeV})^4$

 $\leftrightarrow \tau(p \rightarrow e + \pi^0) > 1.6 \times 10^{34} \text{ years (90\% CL) [SK 2017]}$

Are we missing something ?

Conventional wisdom

= New charged particles below the GUT scale

🗸 Better unification

Higher unification scale M_{GUT} > 10¹⁶GeV

→ proton lifetime is long enough!

Best Example = Supersymmetry !

A twisted way of thinking ?

Fact:

Quarks&Leptons perfectly fit into the representations of SU(5).

Does this mean that Quarks & Leptons should be unified into the SU(5) representations ?

If not, what is the generic theory behind the Standard Model which **explains** the seeming unification of Quarks & Leptons ?

\rightarrow Fake GUT ?

Fake GUT ?

Why SU(5) is successful ?

 ψ(5*) + ψ(10) fermions cannot obtain masses due to the mismatch between the gauge charges and their chiralities !
 [mass term of the fermions requires the fermion with the same chirality but with opposite gauge charges]

As a result, all the fermions in $\psi(5^*) + \psi(10)$ do not obtain masses at the GUT scale \rightarrow They result in the Quarks&Leptons in the SM.

Any GUT models in which the charge-chirarily mismatch happens only for SU(5) $\psi(5^*) + \psi(10)$ predict the Quarks&Leptons which apparently fit into $\psi(5^*) + \psi(10)$.

In general, however, it does not mean that Quarks&Leptons are actually embedded in $\psi(5^*) + \psi(10)$ in the GUT model!

Fake GUT ?

Example : SU(5) x U(2)_H model

 $\langle \Phi \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{ccccc} 0 & 0 & 0 & v & 0\\ 0 & 0 & 0 & v \end{array} \right)$

Gauge coupling non-unification is consistent !

 $1/g_1^2 = 1/g_{GUT}^2 + 3/(5g_{1H}^2)$ $1/g_2^2 = 1/g_{GUT}^2 + 1/(g_{2H}^2)$ $1/g_3^2 = 1/g_{GUT}^2)$

 $1/g_{1,2}^2 > 1/g_{3}^2$ is predicted $M_{GUT} \lesssim 10^{14} \text{GeV}$

Moderate unification is explained for g_{1H, 2H} >> g₅

Fake GUT ?

Example : SU(5) x U(2)_H model $\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 & v & 0 \\ 0 & 0 & 0 & v \end{pmatrix}$

Lepton is not necessarily in $\psi(5^*) + \psi(10)$ in the presence of massive $U(2)_H$ charged particles.

$$\mathcal{L} = m_L L_H \bar{L}_H + \lambda_L \bar{L}_H \Phi \bar{\mathbf{5}} + m_E E_H \bar{E}_H + \frac{\lambda_E}{\Lambda_{\text{cut}}} E_H \mathbf{10} \Phi^{\dagger} \Phi^{\dagger}$$

(i) $m_{L,E} >> GUT scale \rightarrow Quarks \& Leptons in \psi(5^*) + \psi(10)$

(ii) $m_{L,E} << GUT$ scale $\rightarrow Quarks$ in $\psi(5^*) + \psi(10)$, Leptons in L_H , E_H

Even for the case (ii), the model predicts the low energy fermions which fits in $\psi(5^*) + \psi(10)$ of SU(5) = Fake matter unification !

Summary

✓ Quarks & Leptons in the SM miraculously fit into $\psi(5^*) + \psi(10)$ → In conventional GUT, Quarks & Leptons are embedded in $\psi(5^*) + \psi(10)$

✓ Any GUT models in which only the charge-chirarily mismatch happens to $SU(5) \psi(5^*) + \psi(10)$ predict the Quarks&Leptons which apparently fit into $\psi(5^*) + \psi(10)$.

= FAKE GUT !

✓ In Fake GUT, the gauge coupling unification is not predicted although Qaurks&Leptons inevitably fit into $\psi(5^*) + \psi(10)$.

As the matter unification is FAKE, the proton decay rate and the branching ratios are controlled by additional parameters such as the mass parameters of other vector-like fermions.