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Today’s Goal
My today’s tasks: in order to convince people here that  
cosmological constraints on neutrino properties are important,  
!
	 1) explain How? From what? Why? 
!
	 2) review how strongly and robustly we can constrain them 
	     in current cosmological observations

1st half: Cosmic Microwave Background (CMB)
well understood theoretically and experimentally !
precise measurements by WMAP, PLANCK etc are available

2nd half: Large-Scale Structure (LSS)
has started to enter the precision cosmology era like CMB !
necessary to combine LSS with CMB to reach detection of O(0.1eV)
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Cosmic History http://lambda.gsfc.nasa.gov

Scale factor

Redshift

Hubble parameter

§1. Simple Theoretical Background

- z = 0  Present

Past
- z ~ 3000  Rad-Matter equality

- z ~ 1300  Recombination

- z ~ 1100  Photon decoupling
- z ~ 10 Reionization
- z ~ 1  Dark energy dominant

dark energy 
baryon  
cold dark matter (CDM) 
Hubble constant 
initial perturbation 
reionization optical depth

	

 	

 	

 	



flat ΛCDM model: 7 parameters
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Cosmology constrains neutrinos via ‘GRAVITY’
Einstein Eq.

- become non-relativistic at late times.

§1. Simple Theoretical Background

Massless → Massive neutrinos

Angular diameter distance

-                       yields to 

- effective number of neutrinos (c.f. standard                      )
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Cosmic Microwave Background

§1. Simple Theoretical Background

At early times, photon interacts with baryon via Thomson scattering

photon

neutrino

baryon

cold dark matter (CDM)

Right after recombination (z~1300), photon becomes decoupled. 
→ observed as CMB photon of 2.726K

radiation matter
Thomson scattering

Gravity

Sound waves traveling in the baryon-photon fluid

used as a ‘standard ruler’ in the BAO analysis (2nd talk)
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Planck Collaboration: The Planck mission
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Fig. 25. Measured angular power spectra of Planck, WMAP9, ACT, and SPT. The model plotted is Planck’s best-fit model including Planck
temperature, WMAP polarization, ACT, and SPT (the model is labelled [Planck+WP+HighL] in Planck Collaboration XVI (2013)). Error bars
include cosmic variance. The horizontal axis is `0.8.

than that measured using traditional techniques, though in agree-
ment with that determined by other CMB experiments (e.g.,
most notably from the recent WMAP9 analysis where Hinshaw
et al. 2012c find H0 = (69.7 ± 2.4) km s�1 Mpc�1 consis-
tent with the Planck value to within ⇠ 1�). Freedman et al.
(2012), as part of the Carnegie Hubble Program, use Spitzer
Space Telescope mid-infrared observations to recalibrate sec-
ondary distance methods used in the HST Key Project. These
authors find H0 = (74.3±1.5±2.1) km s�1 Mpc�1 where the first
error is statistical and the second systematic. A parallel e↵ort by
Riess et al. (2011) used the Hubble Space Telescope observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation is, H0 = (73.8 ± 2.4) km s�1 Mpc�1

where the error is 1� and includes known sources of systematic
errors. At face value, these measurements are discrepant with the
current Planck estimate at about the 2.5� level. This discrep-
ancy is discussed further in Planck Collaboration XVI (2013).

Extending the Hubble diagram to higher redshifts we note
that the best-fit⇤CDM model provides strong predictions for the
distance scale. This prediction can be compared to the measure-
ments provided by studies of Type Ia SNe and baryon acoustic
oscillations (BAO). Driven in large part by our preference for
a higher matter density we find mild tension with the (relative)
distance scale inferred from compilations of SNe (Conley et al.
2011; Suzuki et al. 2012). In contrast our results are in excellent

agreement with the BAO distance scale compiled in Anderson
et al. (2012).

The Planck data, in combination with polarization measured
by WMAP, high-` anisotropies from ACT and SPT and other,
lower redshift data sets, provides strong constraints on devia-
tions from the minimal model. The low redshift measurements
provided by the BAO allow us to break some degeneracies still
present in the Planck data and significantly tighten constraints on
cosmological parameters in these model extensions. The ACT
and SPT data help to fix our foreground model at high `. The
combination of these experiments provides our best constraints
on the standard 6-parameter model; values of some key parame-
ters in this model are summarized in Table 9.

From an analysis of an extensive grid of models, we find no
strong evidence to favour any extension to the base ⇤CDM cos-
mology, either from the CMB temperature power spectrum alone
or in combination with Planck lensing power spectrum and other
astrophysical datasets. For the wide range of extensions which
we have considered, the posteriors for extra parameters gener-
ally overlap the fiducial model within 1�. The measured values
of the ⇤CDM parameters are relatively robust to the inclusion
of di↵erent parameters, though a few do broaden significantly if
additional degeneracies are introduced. When the Planck likeli-
hood does provide marginal evidence for extensions to the base
⇤CDM model, this comes predominantly from a deficit of power
(compared to the base model) in the data at ` < 30.

The primordial power spectrum is well described by a
power-law over three decades in wave number, with no evidence

35

Statistical Tool to analyze CMB fluctuation

spherical harmonics expansion

the angular power spectrum
observer

Observation

small scalelarge scale

§1. Simple Theoretical Background

(1) (2) (3)
� kns�4

Photon transfer function describes 
the evolution depending on time 
and scale.

Theory
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 (1) Sachs-Wolfe Effect

§1. Simple Theoretical Background

For the modes beyond the horizon at decoupling (l<100), 

SW Integrated SW

Sachs-Wolfe effect: since                                , 

Integrated Sachs-Wolfe effect:                   if matter-dominant 
	 1) early time ISW: not fully matter dominant at recombination 
                                 important to understand neutrino mass effect! 
	  
     2) late time ISW: dark-energy dominant era
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 (1) Sachs-Wolfe Effect

§1. Simple Theoretical Background

CMB Anisotropies 27
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Plate 4: Sensitivity of the acoustic temperature spectrum to four fundamental cosmological
parameters (a) the curvature as quantified by Ωtot (b) the dark energy as quantified by the
cosmological constant ΩΛ (wΛ = −1) (c) the physical baryon density Ωbh2 (d) the physical
matter density Ωmh2, all varied around a fiducial model of Ωtot = 1, ΩΛ = 0.65, Ωbh2 = 0.02,
Ωmh2 = 0.147, n = 1, zri = 0, Ei = 0.

28 Hu & Dodelson

popular belief, any one of these alone is not a standard ruler whose absolute
scale is known even in the working cosmological model. This is reflected in the
sensitivity of these scales to other cosmological parameters. For example, the
dependence of ℓa on Ωmh2 and hence the Hubble constant is quite strong. But
in combination with a measurement of the matter-radiation ratio from ℓeq, this
degeneracy is broken.

The weaker degeneracy of ℓa on the baryons can likewise be broken from a
measurement of the baryon-photon ratio R∗. The damping scale ℓd provides an
additional consistency check on the implicit assumptions in the working model,
e.g. recombination and the energy contents of the Universe during this epoch.
What makes the peaks so valuable for this test is that the rulers are standardize-
able and contain a built-in consistency check.

There remains a weak but perfect degeneracy between Ωtot and ΩΛ because
they both appear only in D∗. This is called the angular diameter distance degen-
eracy in the literature and can readily be generalized to dark energy components
beyond the cosmological constant assumed here. Since the effect of ΩΛ is in-
trinsically so small, it only creates a correspondingly small ambiguity in Ωtot for
reasonable values of ΩΛ. The down side is that dark energy can never be isolated
through the peaks alone since it only takes a small amount of curvature to mimic
its effects. The evidence for dark energy through the CMB comes about by al-
lowing for external information. The most important is the nearly overwhelming
direct evidence for Ωm < 1 from local structures in the Universe. The second is
the measurements of a relatively high Hubble constant h ≈ 0.7; combined with a
relatively low Ωmh2 that is preferred in the CMB data, it implies Ωm < 1 but at
low significance currently.

The upshot is that precise measurements of the acoustic peaks yield precise de-
terminations of four fundamental parameters of the working cosmological model:
Ωbh2, Ωmh2, D∗, and n. More generally, the first three can be replaced by ℓa, ℓeq,
ℓd and R∗ to extend these results to models where the underlying assumptions
of the working model are violated.

4 BEYOND THE PEAKS

Once the acoustic peaks in the temperature and polarization power spectra have
been scaled, the days of splendid isolation of cosmic microwave background the-
ory, analysis and experiment will have ended. Beyond and beneath the peaks
lies a wealth of information about the evolution of structure in the Universe and
its origin in the early universe. As CMB photons traverse the large scale struc-
ture of the Universe on their journey from the recombination epoch, they pick
up secondary temperature and polarization anisotropies. These depend on the
intervening dark matter, dark energy, baryonic gas density and temperature dis-
tributions, and even the existence of primordial gravity waves, so the potential
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28 Hu & Dodelson

popular belief, any one of these alone is not a standard ruler whose absolute
scale is known even in the working cosmological model. This is reflected in the
sensitivity of these scales to other cosmological parameters. For example, the
dependence of ℓa on Ωmh2 and hence the Hubble constant is quite strong. But
in combination with a measurement of the matter-radiation ratio from ℓeq, this
degeneracy is broken.

The weaker degeneracy of ℓa on the baryons can likewise be broken from a
measurement of the baryon-photon ratio R∗. The damping scale ℓd provides an
additional consistency check on the implicit assumptions in the working model,
e.g. recombination and the energy contents of the Universe during this epoch.
What makes the peaks so valuable for this test is that the rulers are standardize-
able and contain a built-in consistency check.

There remains a weak but perfect degeneracy between Ωtot and ΩΛ because
they both appear only in D∗. This is called the angular diameter distance degen-
eracy in the literature and can readily be generalized to dark energy components
beyond the cosmological constant assumed here. Since the effect of ΩΛ is in-
trinsically so small, it only creates a correspondingly small ambiguity in Ωtot for
reasonable values of ΩΛ. The down side is that dark energy can never be isolated
through the peaks alone since it only takes a small amount of curvature to mimic
its effects. The evidence for dark energy through the CMB comes about by al-
lowing for external information. The most important is the nearly overwhelming
direct evidence for Ωm < 1 from local structures in the Universe. The second is
the measurements of a relatively high Hubble constant h ≈ 0.7; combined with a
relatively low Ωmh2 that is preferred in the CMB data, it implies Ωm < 1 but at
low significance currently.

The upshot is that precise measurements of the acoustic peaks yield precise de-
terminations of four fundamental parameters of the working cosmological model:
Ωbh2, Ωmh2, D∗, and n. More generally, the first three can be replaced by ℓa, ℓeq,
ℓd and R∗ to extend these results to models where the underlying assumptions
of the working model are violated.

4 BEYOND THE PEAKS

Once the acoustic peaks in the temperature and polarization power spectra have
been scaled, the days of splendid isolation of cosmic microwave background the-
ory, analysis and experiment will have ended. Beyond and beneath the peaks
lies a wealth of information about the evolution of structure in the Universe and
its origin in the early universe. As CMB photons traverse the large scale struc-
ture of the Universe on their journey from the recombination epoch, they pick
up secondary temperature and polarization anisotropies. These depend on the
intervening dark matter, dark energy, baryonic gas density and temperature dis-
tributions, and even the existence of primordial gravity waves, so the potential

Hu & Dodelson (2002)
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popular belief, any one of these alone is not a standard ruler whose absolute
scale is known even in the working cosmological model. This is reflected in the
sensitivity of these scales to other cosmological parameters. For example, the
dependence of ℓa on Ωmh2 and hence the Hubble constant is quite strong. But
in combination with a measurement of the matter-radiation ratio from ℓeq, this
degeneracy is broken.

The weaker degeneracy of ℓa on the baryons can likewise be broken from a
measurement of the baryon-photon ratio R∗. The damping scale ℓd provides an
additional consistency check on the implicit assumptions in the working model,
e.g. recombination and the energy contents of the Universe during this epoch.
What makes the peaks so valuable for this test is that the rulers are standardize-
able and contain a built-in consistency check.

There remains a weak but perfect degeneracy between Ωtot and ΩΛ because
they both appear only in D∗. This is called the angular diameter distance degen-
eracy in the literature and can readily be generalized to dark energy components
beyond the cosmological constant assumed here. Since the effect of ΩΛ is in-
trinsically so small, it only creates a correspondingly small ambiguity in Ωtot for
reasonable values of ΩΛ. The down side is that dark energy can never be isolated
through the peaks alone since it only takes a small amount of curvature to mimic
its effects. The evidence for dark energy through the CMB comes about by al-
lowing for external information. The most important is the nearly overwhelming
direct evidence for Ωm < 1 from local structures in the Universe. The second is
the measurements of a relatively high Hubble constant h ≈ 0.7; combined with a
relatively low Ωmh2 that is preferred in the CMB data, it implies Ωm < 1 but at
low significance currently.

The upshot is that precise measurements of the acoustic peaks yield precise de-
terminations of four fundamental parameters of the working cosmological model:
Ωbh2, Ωmh2, D∗, and n. More generally, the first three can be replaced by ℓa, ℓeq,
ℓd and R∗ to extend these results to models where the underlying assumptions
of the working model are violated.

4 BEYOND THE PEAKS

Once the acoustic peaks in the temperature and polarization power spectra have
been scaled, the days of splendid isolation of cosmic microwave background the-
ory, analysis and experiment will have ended. Beyond and beneath the peaks
lies a wealth of information about the evolution of structure in the Universe and
its origin in the early universe. As CMB photons traverse the large scale struc-
ture of the Universe on their journey from the recombination epoch, they pick
up secondary temperature and polarization anisotropies. These depend on the
intervening dark matter, dark energy, baryonic gas density and temperature dis-
tributions, and even the existence of primordial gravity waves, so the potential

Late-time ISW

early-time ISW
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(2) Acoustic Oscillation

§1. Simple Theoretical Background

For the modes within the horizon at decoupling (l>100), 

This is just a harmonic oscillator and its solution is

Sound waves traveling in the baryon-photon fluid

Planck Collaboration 2013

odd-peak only depends on baryon density!

One of the best measured quantities in cosmology:

CMB Anisotropies 27
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28 Hu & Dodelson

popular belief, any one of these alone is not a standard ruler whose absolute
scale is known even in the working cosmological model. This is reflected in the
sensitivity of these scales to other cosmological parameters. For example, the
dependence of ℓa on Ωmh2 and hence the Hubble constant is quite strong. But
in combination with a measurement of the matter-radiation ratio from ℓeq, this
degeneracy is broken.

The weaker degeneracy of ℓa on the baryons can likewise be broken from a
measurement of the baryon-photon ratio R∗. The damping scale ℓd provides an
additional consistency check on the implicit assumptions in the working model,
e.g. recombination and the energy contents of the Universe during this epoch.
What makes the peaks so valuable for this test is that the rulers are standardize-
able and contain a built-in consistency check.

There remains a weak but perfect degeneracy between Ωtot and ΩΛ because
they both appear only in D∗. This is called the angular diameter distance degen-
eracy in the literature and can readily be generalized to dark energy components
beyond the cosmological constant assumed here. Since the effect of ΩΛ is in-
trinsically so small, it only creates a correspondingly small ambiguity in Ωtot for
reasonable values of ΩΛ. The down side is that dark energy can never be isolated
through the peaks alone since it only takes a small amount of curvature to mimic
its effects. The evidence for dark energy through the CMB comes about by al-
lowing for external information. The most important is the nearly overwhelming
direct evidence for Ωm < 1 from local structures in the Universe. The second is
the measurements of a relatively high Hubble constant h ≈ 0.7; combined with a
relatively low Ωmh2 that is preferred in the CMB data, it implies Ωm < 1 but at
low significance currently.

The upshot is that precise measurements of the acoustic peaks yield precise de-
terminations of four fundamental parameters of the working cosmological model:
Ωbh2, Ωmh2, D∗, and n. More generally, the first three can be replaced by ℓa, ℓeq,
ℓd and R∗ to extend these results to models where the underlying assumptions
of the working model are violated.

4 BEYOND THE PEAKS

Once the acoustic peaks in the temperature and polarization power spectra have
been scaled, the days of splendid isolation of cosmic microwave background the-
ory, analysis and experiment will have ended. Beyond and beneath the peaks
lies a wealth of information about the evolution of structure in the Universe and
its origin in the early universe. As CMB photons traverse the large scale struc-
ture of the Universe on their journey from the recombination epoch, they pick
up secondary temperature and polarization anisotropies. These depend on the
intervening dark matter, dark energy, baryonic gas density and temperature dis-
tributions, and even the existence of primordial gravity waves, so the potential
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(3) Silk damping

§1. Simple Theoretical Background

Recombination is not instantaneous, and hence diffused photon 
can be affected by friction due to the velocity difference with photon

At smaller scales than photon’s diffusion scale, the temperature  
fluctuation is washed out

3/27/13!

15!

29 

29 

The matter density and the higher peaks 
! The CMB anisotropies are damped at small angular scales 

by photon diffusion.  Well understood! 
! Removing this shows the effects of baryons/potential decay.  

Peak modulation 
by baryon loading.!

Boost by potential 
decay (Θ+Ψ+RΨ).!

DM stabilizes the 
potentials: more 
DM = less boost.!

30 

30 

CMB lensing 
! Photons from the CMB are deflected on their way to us 

by the potentials due to large-scale structure. 
! The typical deflection is 2-3 arcmin. 
! The deflections are coherent over degrees. 
! First considered in 1987, first measured in 2004. 
! Lensing: 

–  Blurs acoustic peaks (more lensing = smoother peaks). 

–  Generates small-scale power. 
–  Generates non-Gaussianity. 
–  Mixes E- and B-mode polarization. 

! ACT and SPT detect lensing at 4-6σ. 
! Planck detects lensing at 25σ (see smearing effect at 10σ). 

–  Integrated to LSS, but peak sensitivity z~2. 
–  Structures of a few Mpc. 

This scale as               , while the sound horizon scales as 
because                             where photon’s mean free path

Note 
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Reionization & CMB polarization

§1. Simple Theoretical Background

The universe is known to be reioniozed at z ~ 10, and the CMB 
photon become scattered and obscured.

The temperature power spectrum is reduced by a factor of 

Polarization can help!

degenerate with fluctuation parameters, 

42 CHAPTER 2 PRIMARY CMB ANISOTROPIES

FIG 2.14.—Forecasts for the ±1σ errors on the E-mode polarization power spectrum CE
ℓ from WMAP and B2K

(left) and Planck (right). The cosmological model, and the assumptions about instrument characteristics, are the
same as in Figure 2.13. For WMAP and B2K, flat band powers are estimated with ∆ℓ = 150 (with finer resolution
on large scales for WMAP in the inset). For Planck we have used the same ℓ-resolution as in Figure 2.13.

history than its cross-correlation with temperature. In particular, the height of the peak scales
as the square of the optical depth to reionization, and, in models with abrupt reionization, the
position of the peak can be used to constrain the reionization epoch. The high value of τ implied
by the one-year WMAP data, when combined with observations of the Gunn-Peterson trough
in high-redshift quasar spectra (e.g., Becker et al. 2002; Fan et al. 2002; Songaila 2004), suggests
an extended period of partial ionization, rather than abrupt reionization. Figure 2.15 (modified
from Holder et al. 2003) shows the ionization histories of three physically-motivated models of
reionization, all constructed to have the same optical depth together with their resulting large-
angle E-mode polarization power spectra. The three models assume different efficiencies for star
formation in dark halos at high redshift and different metallicities of these early stars. Although
the main reionization peak is similar in these models, the secondary peak structure near ℓ = 20
differs by more than cosmic variance showing that CMB polarization can probe more than a
single optical depth parameter. For Planck, the uncertainty in CE

ℓ arising from instrument
noise is comparable to the cosmic variance at around ℓ = 20 in these models. Nevertheless, it
should be possible to extract valuable information on the reionisation history beyond a simple
sharp transition (Holder et al. 2003; Hu & Holder, 2003).

The ability of large-angle polarization observations to constrain the optical depth to reion-
ization breaks important parameter degeneracies present in measurements of the temperature
anisotropies alone. For example, as shown in Figure 2.7, the scalar spectral index nS is strongly
degenerate with the optical depth parameter τ . More troubling is the near-exact degeneracy
involving the tensor to scalar ratio r, the optical depth, and the scalar normalisation AS. As
explained in § 2.3.2, breaking these degeneracies is essential if one is to attempt to discriminate
between the many proposed inflationary models. Accurate measurements of the E-mode polar-
ization can improve constraints in the r–nS plane by partially lifting degeneracies involving τ .
To improve constraints on r further, it is necessary to get around the problem that the tensor
contribution to the temperature and polarization is only significant on large scales (ℓ < 100),
and so is generally lost in the cosmic variance of any scalar contribution. A decomposition
of polarization measurements into E and B-modes is therefore essential for detecting tensor
modes generated during inflation. Since scalar perturbations do not contribute to the B-mode
of polarization in linear theory, B-mode polarization can in principle provide direct constraints
on r, limited only by our ability to deal with foreground and secondary polarization.

2.3.3.4 B-mode polarization with Planck

The most ambitious goal of CMB polarimetry experiments is to map the B-mode polarization. A
detection of a large-angle signal with a thermal spectrum would provide a smoking-gun signature
of a stochastic background of gravitational waves. In models of inflation, the amplitude of the
B-mode of polarization is a direct measure of the inflationary energy scale, and so a detection
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CMB lensing
Primary CMB is lensed by the foreground large-scale structure (LSS)

Smooth out the acoustic peak (~deg scale)

2

Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫

dD
(Ds − D)

D Ds
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =

∫

d2l

(2π)2
Θ(l)eil·n̂ , (3)

[Q ± iU ](n̂) = −
∫

d2l

(2π)2
[E(l) ± iB(l)]e±2iϕleil·n̂ ,

φ(n̂) =
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(2π)2
φ(L)eiL·n̂ ,

where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)

δΘ(l) =

∫
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(2π)2
Θ̃(l′)W (l′,L) , (4)

δE(l) =
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]
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(2π)2

[
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]

W (l′,L) ,

where ϕl′l ≡ ϕl′ − ϕl, L = l − l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a toy
example of the effect of lensing on the temperature and po-
larization fields (see also Benabed et al. 2001). The effect

2

Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫

dD
(Ds − D)

D Ds
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as
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∫
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[E(l) ± iB(l)]e±2iϕleil·n̂ ,
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where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)
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]
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where ϕl′l ≡ ϕl′ − ϕl, L = l − l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a toy
example of the effect of lensing on the temperature and po-
larization fields (see also Benabed et al. 2001). The effect
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Massive neutrinos can suppress LSS (2nd talk) → less lens effect
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The remaining integral is generally small, and the lensed spectrum only deviates from scale
invariant at the O(10−3) level. If there were no lensing power at l > l0, scale invariance would
be preserved on scales l > l0: a large-scale lensing mode magnifies and demagnifies small-
scale structures, which has no effect if the structures are scale invariant. Lensing of the CMB
is important because the acoustic oscillations and small scale damping give a well defined
non-scale-invariant structure to the power spectrum.
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The remaining integral is generally small, and the lensed spectrum only deviates from scale
invariant at the O(10−3) level. If there were no lensing power at l > l0, scale invariance would
be preserved on scales l > l0: a large-scale lensing mode magnifies and demagnifies small-
scale structures, which has no effect if the structures are scale invariant. Lensing of the CMB
is important because the acoustic oscillations and small scale damping give a well defined
non-scale-invariant structure to the power spectrum.
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Note the 4pt estimator is complementary Schmittfull et al. (2013)
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CMB Constraint on 
increasing m means increasing matter at decoupling

Relativistic neutrino’s energy at recombination
In order to be non-relativistic at that time, 

One could reach beyond the limit by a little bit. e.g. ~1.5eV
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Fig. 5.— This figure shows the e↵ects of massive neutrinos on
the CMB power spectrum. The curves show the ratio of mod-
els with

P
m⌫ = 0.5 (dashed green) and 1.0 eV (solid blue)

respectively to the best-fit ⇤CDM (
P

m⌫=0 eV) model spectrum
for SPT+WMAP7. When increasing

P
m⌫ we adjust ⌦⇤ down-

ward to keep ✓s fixed. On large scales, we see a reduction in the
power added by the late-time ISW e↵ect. On intermediate scales
below the neutrino free-streaming length, we see a reduction in the
power contributed by the early ISW e↵ect. On scales smaller than
the neutrino free-streaming length, the more rapid decay of grav-
itational potentials boosts the early ISW power. The amplitude
of the early ISW e↵ect is damped at l & 500 by averaging over
multiple positive and negative contributions.

e↵ects in the low-redshift universe.
To understand neutrino mass constraints from CMB

data, we must understand how the predicted CMB power
spectrum changes with neutrino mass. In the standard
thermal history of the universe, massless neutrinos have
a temperature corresponding to ⇠ 0.17 eV at the epoch
of last scattering. The scale at which masses start to
have an appreciable e↵ect is set by this temperature to
be

P
m⌫ ⇡ 3 ⇥ 0.17 eV.32 Neutrino masses well below

this value have no impact on primary CMB anisotropy.
Hu & Dodelson (2002) and Ichikawa et al. (2005) study
in detail the impact of higher masses on the CMB and
find the dominant impact is due to the ISW e↵ect.
In a matter-dominated universe with zero mean cur-

vature, gravitational potentials remain constant to first
order in linear perturbation theory. Adding components
that do not cluster, while keeping the curvature fixed
to zero, increases the expansion rate which causes the
gravitational potentials to decay. As photons traverse
these decaying potentials on their way toward the ob-
server, new anisotropies are created by what is called
the Integrated Sachs-Wolfe (ISW) e↵ect. The ISW
anisotropy is generated in the ⇤CDM model both at
early times, as photons free stream immediately after
decoupling through a not-completely-matter-dominated
universe (the early ISW e↵ect) and at late times after
the cosmological constant becomes important (the late
ISW e↵ect).
We illustrate how the ISW e↵ect changes with neutrino

mass in Figure 5. In this figure, we plot the ratio of
Cl at either

P
m⌫= 0.5 or 1.0 eV relative to a fiducial

⇤CDM+
P

m⌫ model Cfid
l with

P
m⌫ = 0.0. The baryon

density !b, cold dark matter density !c, and the sound

32 For simplicity we assume three families of neutrinos with de-
generate masses.
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Fig. 6.— This figure illustrates the degeneracy between ns andP
m⌫ , and its role in the SPT+WMAP7 preference for nonzero

neutrino masses. The contours are the 68% and 95% confidence
intervals in the ⇤CDM+

P
m⌫ parameter space for WMAP7 (red)

and SPT+WMAP7 (blue). The SPT data prefer a lower value
of ns than WMAP7, which leads the CMB data to prefer higherP

m⌫ .

horizon scale ✓s are fixed between the three models –P
m⌫ and ⌦⇤ vary. Three regimes are labeled in the

figure: a reduction of power due to the late-time ISW
e↵ect at l . 20, a reduction of power due to the early
ISW e↵ect at 20 . l . 100, and an increase in power
due to the early ISW e↵ect at 100 . l . 500. We briefly
explain these three regimes in the next paragraphs.
As

P
m⌫ increases with !b + !c fixed, the expansion

rate increases at early times. Therefore, ⌦⇤ must de-
crease (increasing DA) to keep ✓s fixed. Without this
adjustment to ⌦⇤, ✓s would change, primarily due to the
change in DA. With this adjustment, we find that in
the mass range of interest, H(z) increases relative to theP

m⌫ = 0 model at z & 1 and decreases at z . 1. The
decreased expansion rate at z . 1 results in less decay
of the gravitational potential on very large scales, and
therefore a reduction in the contribution to the power
from the late-time ISW e↵ect. The net e↵ect is less power
at l . 20. However, the large cosmic variance at these
low multipoles makes the CMB data largely insensitive
to the reduced power.
On scales shorter than the neutrino free-streaming

length, the increased expansion rate just after photon
decoupling enhances the decay of gravitational poten-
tials and thus enhances the early ISW e↵ect. On scales
longer than the free-streaming length, the early ISW ef-
fect is suppressed; the clustering of neutrinos prevents
the potential from decaying more rapidly and, due to the
increased expansion rate, there is less time for the early
ISW e↵ect to accumulate. The dividing line in multipole
space between these two regimes increases with

P
m⌫ .

The magnitude of the ISW e↵ect decreases with increas-
ing l as cancellations between an increasing number of
positive and negative contributions washes out the sig-
nal, becoming negligible by l ⇠ 500.
The reduction of power at l . 100 and increase of

Hou et al. (2012)

Ichikawa, Fukugida, Kawasaki (2005)
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CMB Constraint on Ne�

The Astrophysical Journal Supplement Series, 208:19 (25pp), 2013 October Hinshaw et al.

Figure 8. Illustration of four effects in the CMB anisotropy that can compensate for a change in the total radiation density, ρr , parameterized here by an effective
number of neutrino species, Neff . The filled circles with errors show the nine-year WMAP data (in black), the ACT data (in green; Das et al. 2011b), and the SPT
data (in violet; Keisler et al. 2011). The dashed lines show the best-fit model with Neff = 3.046, while the solid lines show models with Neff = 7 with selected
adjustments applied. (The other parameters in the dashed model are Ωbh

2 = 0.02270, Ωch
2 = 0.1107, H0 = 71.38 km s−1 Mpc−1, ns = 0.969, ∆2

R = 2.384 × 10−9,
and τ = 0.0856.) Top left: the l-axis for the Neff = 7 model has been scaled so that both models have the same angular diameter distance, dA, to the surface of last
scattering. Top right: the cold dark matter density, Ωch

2, has been adjusted in the Neff = 7 model so that both models have the same redshift of matter-radiation
equality, zeq. Bottom left: the amplitude of the Neff = 7 model has been re- scaled to counteract the suppression of power that arises when the neutrino’s anisotropic
stress alters the metric perturbation. Bottom right: the helium abundance, YP, in the Neff = 7 model has been adjusted so that both models have the same diffusion
damping scale.
(A color version of this figure is available in the online journal.)

changing Ωch
2 also changes θ∗, so the l axis is rescaled by

0.957 for the Neff = 7 model in this panel.
3. Anisotropic stress. Relativistic species that do not interact

effectively with themselves or with other species cannot
be described as a (perfect) fluid. As a result, the distribu-
tion function, f (x, p, t), of free-streaming particles has a
non-negligible anisotropic stress,

πij ≡
∫

d3p

(2π )3
p

(
p̂i p̂j − 1

3
δij

)
f (x, p, t), (15)

as well as higher-order moments. The energy density,
pressure, and momentum are obtained from the dis-
tribution function by ρ = (2π )−3

∫
d3p p f , P =

(2π )−3
∫

d3p p
3 f , and ui = (2π )−3

∫
d3p pi f , respec-

tively. This term alters metric perturbations during the
radiation era (via Einstein’s field equations) and thus
temperature fluctuations on scales l ! 130, since those
scales enter the horizon during the radiation era. On
larger scales, fluctuations enter the horizon during the
matter era and are less affected by this term. Tem-
perature fluctuations on these scales are given by the

Sachs–Wolfe formula, δT/T = −R/5, while those on
smaller scales (ignoring the effect of baryons) are given
by δT/T = − (1 + 4fν/15)−1 R cos(krs) (Hu & Sugiyama
1996), where fν is the fraction of the radiation density that
is free-streaming,

fν(Neff) ≡ 0.2271Neff

1 + 0.2271Neff
. (16)

The small-scale anisotropy is enhanced by a factor of 5(1 +
4fν/15)−1 due to the decay of the gravitational potential
at the horizon crossing during the radiation era. Since the
anisotropic stress alters the gravitational potential (via the
field equations), it also alters the degree to which the small-
scale anisotropy is enhanced relative to the large-scale
anisotropy. Therefore, the effect of anisotropic stress can be
removed by multiplying CTT

l (l ! 130) by (1 + 4fν/15)2. In
the bottom left panel of Figure 8, we have multiplied CTT

l

at all l by [1 + 4fν(7)/15]2/[1 + 4fν(3.046)/15]2, where
fν(7) = 0.6139 and fν(3.046) = 0.4084. The two models
now agree well, but the Neff = 7 model is greater than the
standard model at l " 130 because the anisotropic stress
term does not affect these multipoles.

13

increasing Neff means increasing radiation at decoupling

nicely illustrated by WMAP9 paper
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Successful observations of CMB

§2. Observational Results

COBE nicely measured the Planck distribution

full-sky satellite: WMAP, PLANCK

terrestrial small-sky but high-resolution: SPT, ACT, POLARBEAR
c.f. 西野さんのトーク

Planck Collaboration: The Planck mission
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Fig. 25. Measured angular power spectra of Planck, WMAP9, ACT, and SPT. The model plotted is Planck’s best-fit model including Planck
temperature, WMAP polarization, ACT, and SPT (the model is labelled [Planck+WP+HighL] in Planck Collaboration XVI (2013)). Error bars
include cosmic variance. The horizontal axis is `0.8.

than that measured using traditional techniques, though in agree-
ment with that determined by other CMB experiments (e.g.,
most notably from the recent WMAP9 analysis where Hinshaw
et al. 2012c find H0 = (69.7 ± 2.4) km s�1 Mpc�1 consis-
tent with the Planck value to within ⇠ 1�). Freedman et al.
(2012), as part of the Carnegie Hubble Program, use Spitzer
Space Telescope mid-infrared observations to recalibrate sec-
ondary distance methods used in the HST Key Project. These
authors find H0 = (74.3±1.5±2.1) km s�1 Mpc�1 where the first
error is statistical and the second systematic. A parallel e↵ort by
Riess et al. (2011) used the Hubble Space Telescope observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation is, H0 = (73.8 ± 2.4) km s�1 Mpc�1

where the error is 1� and includes known sources of systematic
errors. At face value, these measurements are discrepant with the
current Planck estimate at about the 2.5� level. This discrep-
ancy is discussed further in Planck Collaboration XVI (2013).

Extending the Hubble diagram to higher redshifts we note
that the best-fit⇤CDM model provides strong predictions for the
distance scale. This prediction can be compared to the measure-
ments provided by studies of Type Ia SNe and baryon acoustic
oscillations (BAO). Driven in large part by our preference for
a higher matter density we find mild tension with the (relative)
distance scale inferred from compilations of SNe (Conley et al.
2011; Suzuki et al. 2012). In contrast our results are in excellent

agreement with the BAO distance scale compiled in Anderson
et al. (2012).

The Planck data, in combination with polarization measured
by WMAP, high-` anisotropies from ACT and SPT and other,
lower redshift data sets, provides strong constraints on devia-
tions from the minimal model. The low redshift measurements
provided by the BAO allow us to break some degeneracies still
present in the Planck data and significantly tighten constraints on
cosmological parameters in these model extensions. The ACT
and SPT data help to fix our foreground model at high `. The
combination of these experiments provides our best constraints
on the standard 6-parameter model; values of some key parame-
ters in this model are summarized in Table 9.

From an analysis of an extensive grid of models, we find no
strong evidence to favour any extension to the base ⇤CDM cos-
mology, either from the CMB temperature power spectrum alone
or in combination with Planck lensing power spectrum and other
astrophysical datasets. For the wide range of extensions which
we have considered, the posteriors for extra parameters gener-
ally overlap the fiducial model within 1�. The measured values
of the ⇤CDM parameters are relatively robust to the inclusion
of di↵erent parameters, though a few do broaden significantly if
additional degeneracies are introduced. When the Planck likeli-
hood does provide marginal evidence for extensions to the base
⇤CDM model, this comes predominantly from a deficit of power
(compared to the base model) in the data at ` < 30.

The primordial power spectrum is well described by a
power-law over three decades in wave number, with no evidence
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Fig. 5.— This figure shows the e↵ects of massive neutrinos on
the CMB power spectrum. The curves show the ratio of mod-
els with

P
m⌫ = 0.5 (dashed green) and 1.0 eV (solid blue)

respectively to the best-fit ⇤CDM (
P

m⌫=0 eV) model spectrum
for SPT+WMAP7. When increasing

P
m⌫ we adjust ⌦⇤ down-

ward to keep ✓s fixed. On large scales, we see a reduction in the
power added by the late-time ISW e↵ect. On intermediate scales
below the neutrino free-streaming length, we see a reduction in the
power contributed by the early ISW e↵ect. On scales smaller than
the neutrino free-streaming length, the more rapid decay of grav-
itational potentials boosts the early ISW power. The amplitude
of the early ISW e↵ect is damped at l & 500 by averaging over
multiple positive and negative contributions.

e↵ects in the low-redshift universe.
To understand neutrino mass constraints from CMB

data, we must understand how the predicted CMB power
spectrum changes with neutrino mass. In the standard
thermal history of the universe, massless neutrinos have
a temperature corresponding to ⇠ 0.17 eV at the epoch
of last scattering. The scale at which masses start to
have an appreciable e↵ect is set by this temperature to
be

P
m⌫ ⇡ 3 ⇥ 0.17 eV.32 Neutrino masses well below

this value have no impact on primary CMB anisotropy.
Hu & Dodelson (2002) and Ichikawa et al. (2005) study
in detail the impact of higher masses on the CMB and
find the dominant impact is due to the ISW e↵ect.
In a matter-dominated universe with zero mean cur-

vature, gravitational potentials remain constant to first
order in linear perturbation theory. Adding components
that do not cluster, while keeping the curvature fixed
to zero, increases the expansion rate which causes the
gravitational potentials to decay. As photons traverse
these decaying potentials on their way toward the ob-
server, new anisotropies are created by what is called
the Integrated Sachs-Wolfe (ISW) e↵ect. The ISW
anisotropy is generated in the ⇤CDM model both at
early times, as photons free stream immediately after
decoupling through a not-completely-matter-dominated
universe (the early ISW e↵ect) and at late times after
the cosmological constant becomes important (the late
ISW e↵ect).
We illustrate how the ISW e↵ect changes with neutrino

mass in Figure 5. In this figure, we plot the ratio of
Cl at either

P
m⌫= 0.5 or 1.0 eV relative to a fiducial

⇤CDM+
P

m⌫ model Cfid
l with

P
m⌫ = 0.0. The baryon

density !b, cold dark matter density !c, and the sound

32 For simplicity we assume three families of neutrinos with de-
generate masses.
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Fig. 6.— This figure illustrates the degeneracy between ns andP
m⌫ , and its role in the SPT+WMAP7 preference for nonzero

neutrino masses. The contours are the 68% and 95% confidence
intervals in the ⇤CDM+

P
m⌫ parameter space for WMAP7 (red)

and SPT+WMAP7 (blue). The SPT data prefer a lower value
of ns than WMAP7, which leads the CMB data to prefer higherP

m⌫ .

horizon scale ✓s are fixed between the three models –P
m⌫ and ⌦⇤ vary. Three regimes are labeled in the

figure: a reduction of power due to the late-time ISW
e↵ect at l . 20, a reduction of power due to the early
ISW e↵ect at 20 . l . 100, and an increase in power
due to the early ISW e↵ect at 100 . l . 500. We briefly
explain these three regimes in the next paragraphs.
As

P
m⌫ increases with !b + !c fixed, the expansion

rate increases at early times. Therefore, ⌦⇤ must de-
crease (increasing DA) to keep ✓s fixed. Without this
adjustment to ⌦⇤, ✓s would change, primarily due to the
change in DA. With this adjustment, we find that in
the mass range of interest, H(z) increases relative to theP

m⌫ = 0 model at z & 1 and decreases at z . 1. The
decreased expansion rate at z . 1 results in less decay
of the gravitational potential on very large scales, and
therefore a reduction in the contribution to the power
from the late-time ISW e↵ect. The net e↵ect is less power
at l . 20. However, the large cosmic variance at these
low multipoles makes the CMB data largely insensitive
to the reduced power.
On scales shorter than the neutrino free-streaming

length, the increased expansion rate just after photon
decoupling enhances the decay of gravitational poten-
tials and thus enhances the early ISW e↵ect. On scales
longer than the free-streaming length, the early ISW ef-
fect is suppressed; the clustering of neutrinos prevents
the potential from decaying more rapidly and, due to the
increased expansion rate, there is less time for the early
ISW e↵ect to accumulate. The dividing line in multipole
space between these two regimes increases with

P
m⌫ .

The magnitude of the ISW e↵ect decreases with increas-
ing l as cancellations between an increasing number of
positive and negative contributions washes out the sig-
nal, becoming negligible by l ⇠ 500.
The reduction of power at l . 100 and increase of

WMAP9 only !!
WMAP9 + ACT/SPT

WMAP9 only !!
WMAP9 + ACT/SPT

�
m� < 1.5 eV (95%C.L.)
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4. Enhanced damping tail. While the increased expansion
rate reduces the sound horizon, rs, it also reduces the
diffusion length, rd, that photons travel by random walk.
The mean free path of a photon is λC = 1/(σT ne). Over
the age of the universe, t, photons diffuse a distance
rd ≈

√
3ct/λC λC ∝

√
λC/H , and fluctuations within rd

are exponentially suppressed (Silk damping; Silk 1968).
Now, while the sound horizon is proportional to 1/H , the
diffusion length is proportional to 1/

√
H , due to the random

walk nature of the diffusion, thus, rd/rs ∝
√

H . As a result,
increasing the expansion rate increases the diffusion length
relative to the sound horizon, which enhances the Silk
damping of the small-scale anisotropy (Bashinsky & Seljak
2004). Note that rd/rs also depends on the mean free path
of the photon, rd/rs ∝

√
HλC ∝

√
H/ne, thus one can

compensate for the increased expansion rate by increasing
the number density of free electrons. One way to achieve
this is to reduce the helium abundance, Yp (Bashinsky &
Seljak 2004; Hou et al. 2013): since helium recombines
earlier than the epoch of photon decoupling, the number
density of free electrons at the decoupling epoch is given
by ne = (1 − Yp) nb, where nb is the number density of
baryons (Hu et al. 1995; see also Section 4.8 of Komatsu
et al. 2011). In the bottom right panel of Figure 8, we
show CTT

l for the Neff = 7 model after reducing Yp from
0.24 to 0.08308, which preserves the ratio rd/rs . The solid
and dashed model curves now agree completely (except
for l ! 130 where our compensation for anisotropic stress
was ad hoc).

4.3.2. Measurements of Neff and YHe:
Testing Big Bang Nucleosynthesis

Using the five-year WMAP data alone, Dunkley et al. (2009)
measured the effect of anisotropic stress on the power spectrum
and set a lower bound on Neff . However, BAO and H0 data were
still required to set an upper bound due to a degeneracy with
the matter-radiation equality redshift (Komatsu et al. 2009).
This was unchanged for the seven-year analysis (Komatsu
et al. 2011). Now, with much improved measurements of the
enhanced damping tail from SPT and ACT (Section 2.2.1),
CMB data alone are able to determine Neff (Dunkley et al. 2011;
Keisler et al. 2011). Using the nine-year WMAP data combined
with SPT and ACT, we find

Neff = 3.89 ± 0.67(68% CL) WMAP+eCMB; YHe fixed.

The inclusion of lensing in the eCMB likelihood helps this
constraint because the primary CMB fluctuations are still
relatively insensitive to a combination of Neff and Ωmh2, as
described above. CMB lensing data help constrain Ωmh2 by
constraining σ8. The measurement is further improved by
including the BAO and H0 data, which reduces the degeneracy
with the matter-radiation equality redshift. We find

Neff = 3.84 ± 0.40(68% CL) WMAP+eCMB+BAO+H0;
YHe fixed,

which is consistent with the standard model value of Neff =
3.046. We thus find no evidence for the existence of extra
radiation species (see also Calabrese et al. 2012).

As noted above, this measurement of Neff relies on the
damping tail measured by ACT and SPT, which is also affected
by the primordial helium abundance, YHe. Figure 9 shows the
joint, marginalized constraints on Neff and YHe using the above
two data combinations. As expected, these two parameters are

Figure 9. Joint, marginalized constraints (68% and 95% CL) on the primordial
helium abundance, YHe, and the energy density of “extra radiation species,”
parameterized as an effective number of neutrino species, Neff . These con-
straints are derived from the nine-year WMAP+eCMB data (black), and from
WMAP+eCMB+BAO+H0 data (red). The green curve shows the predicted de-
pendence of YHe on Neff from big bang nucleosynthesis; the dashed lines indicate
the standard model: Neff = 3.046, YHe = 0.248.
(A color version of this figure is available in the online journal.)

anti-correlated when fit to CMB data alone (black contours).
When BAO and H0 measurements are included, we find

Neff = 3.55+0.49
−0.48

YHe = 0.278+0.034
−0.032

(68% CL) WMAP+eCMB+BAO+H0.

When combined with our measurement of the baryon density,
both of these values are within the 95% CL region of the
standard BBN prediction (Steigman 2012), shown by the green
curve in Figure 9. Our measurement provides strong support for
the standard BBN scenario. Table 7 summarizes the nine-year
measurements of Neff and YHe.

4.4. Neutrino Mass

The mean energy of a relativistic neutrino at the epoch of
recombination is ⟨E⟩ = 0.58 eV. In order for the CMB power
spectrum to be sensitive to a non-zero neutrino mass, at least
one species of neutrino must have a mass in excess of this mean
energy. If one assumes that there are Neff = 3.046 neutrino
species with degenerate mass eigenstates, this would suggest
that the lowest total mass that could be detected with CMB
data is

∑
mν ∼ 1.8 eV. Using a refined argument, Ichikawa

et al. (2005) argue that one could reach ∼1.5 eV. When we add∑
mν = 93 eV (Ωνh

2) as a parameter to the ΛCDM model we
obtain the fit given in Table 8, specifically

∑
mν < 1.3 eV (95% CL) WMAP only,

which is at the basic limit just presented.
When the mass of individual neutrinos is less than 0.58 eV, the

CMB power spectrum alone (excluding CMB lensing) cannot
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Fig. 26. Marginalized posterior distributions for
P

m⌫
in flat models from CMB data. We show results for
Planck+WP+highL without (solid black) and with (red)
marginalization over AL, showing how the posterior is signifi-
cantly broadened by removing the lensing information from the
temperature anisotropy power spectrum. The e↵ect of replacing
the low-` temperature and (WMAP) polarization data with a
⌧ prior is shown in solid blue (Planck�lowL+highL+⌧prior)
and of further removing the high-` data in dot-dashed blue
(Planck�lowL+⌧prior). We also show the result of including
the lensing likelihood with Planck+WP+highL (dashed black)
and Planck�lowL+highL+⌧prior (dashed blue).

mation by marginalizing over AL
32. We see that the posterior

broadens considerably (see the red curve in Fig. 26) to give
X

m⌫ < 1.08 eV [95%; Planck+WP+highL (AL)], (70)

taking us back close to the value of 1.3 eV (for AL = 1) from
the nine-year WMAP data (Hinshaw et al. 2012), corresponding
to the limit above which neutrinos become non-relativistic be-
fore recombination. (The resolution of WMAP gives very little
sensitivity to lensing e↵ects.)

As discussed in Sect. 5.1, the Planck+WP+highL data com-
bination has a preference for high AL. Since massive neutrinos
suppress the lensing power (like a low AL) there is a concern
that the same tensions which drive AL high may give artificially
tight constraints on

P
m⌫. We can investigate this issue by re-

placing the low-` data with a prior on the optical depth (as in
Sect. 5.1) and removing the high-` data. Posterior distributions
with the ⌧ prior, and additionally without the high-` data, are
shown in Fig. 26 by the solid blue and dot-dashed blue curves,
respectively. The constraint on

P
m⌫ does not degrade much by

replacing the low-` data with the ⌧ prior only, but the degra-
dation is more severe when the high-` data are also removed:P

m⌫ < 1.31 eV (95% CL).
Including the lensing likelihood (see Sect. 5.1) has a signif-

icant, but surprising, e↵ect on our results. Adding the lensing

32The power spectrum of the temperature anisotropies is predomi-
nantly sensitive to changes in only one mode of the lensing potential
power spectrum (Smith et al. 2006). It follows that marginalizing over
the single parameter AL is nearly equivalent to marginalizing over the
full amplitude and shape information in the lensing power spectrum as
regards constraints from the temperature power spectrum.

likelihood to the Planck+WP+highL data combination weakens
the limit on

P
m⌫,

X
m⌫ < 0.85 eV (95%; Planck+lensing+WP+highL), (71)

as shown by the dashed black curve in Fig. 26. This is representa-
tive of a general trend that the Planck lensing likelihood favours
larger

P
m⌫ than the temperature power spectrum. Indeed, if we

use the data combination Planck�lowL+highL+⌧prior, which
gives a weaker constraint from the temperature power spectrum,
adding lensing gives a best-fit away from zero (

P
m⌫ = 0.66 eV;

dashed blue curve in Fig. 26). However, the total �2 at the
best-fit is only 0.3 lower than in the best-fitting base model
(
P

m⌫ = 0.06 eV). The fit to the lensing data is rather better
(��2 = �3.2) while the fit to the Planck temperature spec-
trum (excluding low-`) and high-` is worse (��2 = 0.4 and 2.6,
respectively). There are rather large shifts in other cosmolog-
ical parameters between these best-fit solutions corresponding
to shifts along the acoustic-scale degeneracy direction for the
temperature power spectrum. Note that, as well as the change
in H0 (which falls to compensate the increase in

P
m⌫ at fixed

acoustic scale), ns, !b and !c change significantly keeping the
lensed temperature spectrum almost constant. These latter shifts
are similar to those discussed for AL in Sect. 5.1, with non-zeroP

m⌫ acting like AL < 1. The lensing power spectrum C��` is
lower by 9.1% for the higher-mass best fit at ` = 400 and larger
by 2.1% at ` = 40, which is a similar trend to the residuals from
the best-fit minimal-mass model shown in the bottom panel of
Fig. 12. Planck Collaboration XVII (2013) explores the robust-
ness of the C��` estimates to various data cuts and foreground-
cleaning methods. The first (` = 40–85) bandpower is the least
stable to these choices, although the variations are not statis-
tically significant. We have checked that excluding this band-
power does not change the posterior for

P
m⌫ significantly, as

expected since most of the constraining power on
P

m⌫ comes
from the bandpowers on smaller scales. At this stage, it is un-
clear what to make of this mild preference for high masses from
the 4-point function compared to the 2-point function. As noted
in Planck Collaboration XVII (2013), the lensing measurements
from ACT (Das et al. 2013) and SPT (van Engelen et al. 2012)
show similar trends to those from Planck where they overlap
in scale. With further Planck data (including polarization), and
forthcoming measurements from the full 2500 deg2 SPT temper-
ature survey, we can expect more definitive results on this issue
in the near future.

Apart from its impact on the early-ISW e↵ect and lensing
potential, the total neutrino mass a↵ects the angular-diameter
distance to last scattering, and can be constrained through the
angular scale of the first acoustic peak. However, this e↵ect is
degenerate with ⌦⇤ (and so the derived H0) in flat models and
with other late-time parameters such as ⌦K and w in more gen-
eral models (Howlett et al. 2012). Late-time geometric measure-
ments help in reducing this “geometric” degeneracy. Increasing
the neutrino masses at fixed ✓⇤ increases the angular-diameter
distance for 0  z  z⇤ and reduces the expansion rate at low red-
shift (z <⇠ 1) but increases it at higher redshift. The spherically-
averaged BAO distance DV(z) therefore increases with increas-
ing neutrino mass at fixed ✓⇤, and the Hubble constant falls; see
Fig. 8 of Hou et al. (2012). With the BAO data of Sect. 5.2, we
find a significantly lower bound on the neutrino mass:
X

m⌫ < 0.23 eV (95%; Planck+WP+highL+BAO). (72)

The ⇤CDM model with minimal neutrino masses was shown in
Sect. 5.3 to be in tension with recent direct measurements of H0
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Fig. 32. 2D joint posterior distribution for Ne↵ and YP with both
parameters varying freely, determined from Planck+WP+highL
data. Samples are colour-coded by the value of the angular ra-
tio ✓D/✓⇤, which is constant along the degeneracy direction. The
Ne↵–YP relation from BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with YP > 0.294 is highlighted in grey, delineating the re-
gion that exceeds the 2� upper limit of the recent measurement
of initial Solar helium abundance (Serenelli & Basu 2010), and
the blue horizontal region is the 68% confidence region from
the Aver et al. (2012) compilation of 4He measurements.

observationally-relevant angular ratio ✓D/✓⇤ / (kDr⇤)�1. The
main constraint on Ne↵ and YP comes from the precise measure-
ment of this ratio by the CMB, leaving the degeneracy along the
constant ✓D/✓⇤ direction. The relation between Ne↵ and YP from
BBN theory is shown in the figure by the dashed curve37. The
standard BBN prediction with Ne↵ = 3.046 is contained within
the 68% confidence region. The grey region is for YP > 0.294
and is the 2� conservative upper bound on the primordial he-
lium abundance from Serenelli & Basu (2010). Most of the sam-
ples are consistent with this bound. The inferred estimates of Ne↵
and YP from the Planck+WP+highL data are

Ne↵ = 3.33+0.59
�0.83 (68%; Planck+WP+highL), (90a)

YP = 0.254+0.041
�0.033 (68%; Planck+WP+highL). (90b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓D/✓⇤. Instead, it is constrained, at least in part,
by the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As discussed in Hou et al. (2012), this ef-
fect explains the observed correlation between Ne↵ and ✓⇤, which
is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵ model
is also plotted in the figure showing that the Ne↵–YP degeneracy
combines with the phase shifts to generate a larger dispersion in
✓⇤ in such models.

6.5. Dark energy

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
Perhaps the most straightforward explanation is that dark en-
ergy is a cosmological constant. An alternative is dynamical dark

37For constant Ne↵ , the variation due to the uncertainty in the baryon
density is too small to be visible, given the thickness of the curve.

Fig. 33. 2D joint posterior distribution between Ne↵ and ✓⇤ for
⇤CDM models with variable Ne↵ (blue) and variable Ne↵ and YP
(red). Both cases are for Planck+WP+highL data.

energy (Wetterich 1988; Ratra & Peebles 1988; Caldwell et al.
1998), usually based on a scalar field. In the simplest models,
the field is very light, has a canonical kinetic energy term and
is minimally coupled to gravity. In such models the dark energy
sound speed equals the speed of light and it has zero anisotropic
stress. It thus contributes very little to clustering. We shall only
consider such models in this subsection.

A cosmological constant has an equation of state w ⌘ p/⇢ =
�1, while scalar field models typically have time varying w with
w � �1. The analysis performed here is based on the “parameter-
ized post-Friedmann” (PPF) framework of Hu & Sawicki (2007)
and Hu (2008) as implemented in camb (Fang et al. 2008b,a) and
discussed earlier in Sect. 2. This allows us to investigate both re-
gions of parameter space in which w < �1 (sometimes referred
to as the “phantom” domain) and models in which w changes
with time.

Figure 34 shows the marginalized posterior distributions for
w for an extension of the base⇤CDM cosmology to models with
constant w. We present results for Planck+WP and in combi-
nation with SNe or BAO data. (Note that adding in the high-`
data from ACT and SPT results in little change to the posteriors
shown in Fig. 34.) As expected, the CMB alone does not strongly
constrain w, due to the two-dimensional geometric degeneracy
in these models. We can break this degeneracy by combining
the CMB data with lower redshift distance measures. Adding in
BAO data tightens the constraints substantially, giving

w = �1.13+0.24
�0.25 (95%; Planck+WP+BAO), (91)

in good agreement with a cosmological constant (w = �1).
Using supernovae data leads to the constraints

w = �1.09 ± 0.17 (95%; Planck+WP+Union2.1), (92a)
w = �1.13+0.13

�0.14 (95%; Planck+WP+SNLS), (92b)

The combination with SNLS data favours the phantom domain
(w < �1) at 2�, while the Union2.1 compilation is more consis-
tent with a cosmological constant.

If instead we combine Planck+WP with the Riess et al.
(2011) measurement of H0, we find

w = �1.24+0.18
�0.19 (95%; Planck+WP+H0), (93)
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Fig. 32. 2D joint posterior distribution for Ne↵ and YP with both
parameters varying freely, determined from Planck+WP+highL
data. Samples are colour-coded by the value of the angular ra-
tio ✓D/✓⇤, which is constant along the degeneracy direction. The
Ne↵–YP relation from BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with YP > 0.294 is highlighted in grey, delineating the re-
gion that exceeds the 2� upper limit of the recent measurement
of initial Solar helium abundance (Serenelli & Basu 2010), and
the blue horizontal region is the 68% confidence region from
the Aver et al. (2012) compilation of 4He measurements.

observationally-relevant angular ratio ✓D/✓⇤ / (kDr⇤)�1. The
main constraint on Ne↵ and YP comes from the precise measure-
ment of this ratio by the CMB, leaving the degeneracy along the
constant ✓D/✓⇤ direction. The relation between Ne↵ and YP from
BBN theory is shown in the figure by the dashed curve37. The
standard BBN prediction with Ne↵ = 3.046 is contained within
the 68% confidence region. The grey region is for YP > 0.294
and is the 2� conservative upper bound on the primordial he-
lium abundance from Serenelli & Basu (2010). Most of the sam-
ples are consistent with this bound. The inferred estimates of Ne↵
and YP from the Planck+WP+highL data are

Ne↵ = 3.33+0.59
�0.83 (68%; Planck+WP+highL), (90a)

YP = 0.254+0.041
�0.033 (68%; Planck+WP+highL). (90b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓D/✓⇤. Instead, it is constrained, at least in part,
by the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As discussed in Hou et al. (2012), this ef-
fect explains the observed correlation between Ne↵ and ✓⇤, which
is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵ model
is also plotted in the figure showing that the Ne↵–YP degeneracy
combines with the phase shifts to generate a larger dispersion in
✓⇤ in such models.

6.5. Dark energy

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
Perhaps the most straightforward explanation is that dark en-
ergy is a cosmological constant. An alternative is dynamical dark

37For constant Ne↵ , the variation due to the uncertainty in the baryon
density is too small to be visible, given the thickness of the curve.

Fig. 33. 2D joint posterior distribution between Ne↵ and ✓⇤ for
⇤CDM models with variable Ne↵ (blue) and variable Ne↵ and YP
(red). Both cases are for Planck+WP+highL data.

energy (Wetterich 1988; Ratra & Peebles 1988; Caldwell et al.
1998), usually based on a scalar field. In the simplest models,
the field is very light, has a canonical kinetic energy term and
is minimally coupled to gravity. In such models the dark energy
sound speed equals the speed of light and it has zero anisotropic
stress. It thus contributes very little to clustering. We shall only
consider such models in this subsection.

A cosmological constant has an equation of state w ⌘ p/⇢ =
�1, while scalar field models typically have time varying w with
w � �1. The analysis performed here is based on the “parameter-
ized post-Friedmann” (PPF) framework of Hu & Sawicki (2007)
and Hu (2008) as implemented in camb (Fang et al. 2008b,a) and
discussed earlier in Sect. 2. This allows us to investigate both re-
gions of parameter space in which w < �1 (sometimes referred
to as the “phantom” domain) and models in which w changes
with time.

Figure 34 shows the marginalized posterior distributions for
w for an extension of the base⇤CDM cosmology to models with
constant w. We present results for Planck+WP and in combi-
nation with SNe or BAO data. (Note that adding in the high-`
data from ACT and SPT results in little change to the posteriors
shown in Fig. 34.) As expected, the CMB alone does not strongly
constrain w, due to the two-dimensional geometric degeneracy
in these models. We can break this degeneracy by combining
the CMB data with lower redshift distance measures. Adding in
BAO data tightens the constraints substantially, giving

w = �1.13+0.24
�0.25 (95%; Planck+WP+BAO), (91)

in good agreement with a cosmological constant (w = �1).
Using supernovae data leads to the constraints

w = �1.09 ± 0.17 (95%; Planck+WP+Union2.1), (92a)
w = �1.13+0.13

�0.14 (95%; Planck+WP+SNLS), (92b)

The combination with SNLS data favours the phantom domain
(w < �1) at 2�, while the Union2.1 compilation is more consis-
tent with a cosmological constant.

If instead we combine Planck+WP with the Riess et al.
(2011) measurement of H0, we find

w = �1.24+0.18
�0.19 (95%; Planck+WP+H0), (93)
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Fig. 32. 2D joint posterior distribution for Ne↵ and YP with both
parameters varying freely, determined from Planck+WP+highL
data. Samples are colour-coded by the value of the angular ra-
tio ✓D/✓⇤, which is constant along the degeneracy direction. The
Ne↵–YP relation from BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with YP > 0.294 is highlighted in grey, delineating the re-
gion that exceeds the 2� upper limit of the recent measurement
of initial Solar helium abundance (Serenelli & Basu 2010), and
the blue horizontal region is the 68% confidence region from
the Aver et al. (2012) compilation of 4He measurements.

observationally-relevant angular ratio ✓D/✓⇤ / (kDr⇤)�1. The
main constraint on Ne↵ and YP comes from the precise measure-
ment of this ratio by the CMB, leaving the degeneracy along the
constant ✓D/✓⇤ direction. The relation between Ne↵ and YP from
BBN theory is shown in the figure by the dashed curve37. The
standard BBN prediction with Ne↵ = 3.046 is contained within
the 68% confidence region. The grey region is for YP > 0.294
and is the 2� conservative upper bound on the primordial he-
lium abundance from Serenelli & Basu (2010). Most of the sam-
ples are consistent with this bound. The inferred estimates of Ne↵
and YP from the Planck+WP+highL data are

Ne↵ = 3.33+0.59
�0.83 (68%; Planck+WP+highL), (90a)

YP = 0.254+0.041
�0.033 (68%; Planck+WP+highL). (90b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓D/✓⇤. Instead, it is constrained, at least in part,
by the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As discussed in Hou et al. (2012), this ef-
fect explains the observed correlation between Ne↵ and ✓⇤, which
is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵ model
is also plotted in the figure showing that the Ne↵–YP degeneracy
combines with the phase shifts to generate a larger dispersion in
✓⇤ in such models.

6.5. Dark energy

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
Perhaps the most straightforward explanation is that dark en-
ergy is a cosmological constant. An alternative is dynamical dark

37For constant Ne↵ , the variation due to the uncertainty in the baryon
density is too small to be visible, given the thickness of the curve.
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energy (Wetterich 1988; Ratra & Peebles 1988; Caldwell et al.
1998), usually based on a scalar field. In the simplest models,
the field is very light, has a canonical kinetic energy term and
is minimally coupled to gravity. In such models the dark energy
sound speed equals the speed of light and it has zero anisotropic
stress. It thus contributes very little to clustering. We shall only
consider such models in this subsection.

A cosmological constant has an equation of state w ⌘ p/⇢ =
�1, while scalar field models typically have time varying w with
w � �1. The analysis performed here is based on the “parameter-
ized post-Friedmann” (PPF) framework of Hu & Sawicki (2007)
and Hu (2008) as implemented in camb (Fang et al. 2008b,a) and
discussed earlier in Sect. 2. This allows us to investigate both re-
gions of parameter space in which w < �1 (sometimes referred
to as the “phantom” domain) and models in which w changes
with time.

Figure 34 shows the marginalized posterior distributions for
w for an extension of the base⇤CDM cosmology to models with
constant w. We present results for Planck+WP and in combi-
nation with SNe or BAO data. (Note that adding in the high-`
data from ACT and SPT results in little change to the posteriors
shown in Fig. 34.) As expected, the CMB alone does not strongly
constrain w, due to the two-dimensional geometric degeneracy
in these models. We can break this degeneracy by combining
the CMB data with lower redshift distance measures. Adding in
BAO data tightens the constraints substantially, giving

w = �1.13+0.24
�0.25 (95%; Planck+WP+BAO), (91)

in good agreement with a cosmological constant (w = �1).
Using supernovae data leads to the constraints

w = �1.09 ± 0.17 (95%; Planck+WP+Union2.1), (92a)
w = �1.13+0.13

�0.14 (95%; Planck+WP+SNLS), (92b)

The combination with SNLS data favours the phantom domain
(w < �1) at 2�, while the Union2.1 compilation is more consis-
tent with a cosmological constant.

If instead we combine Planck+WP with the Riess et al.
(2011) measurement of H0, we find

w = �1.24+0.18
�0.19 (95%; Planck+WP+H0), (93)
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Fig. B.3. Upper: comparison of the ⇤CDM constraints on ns (top-left) and single-parameter extensions of the ⇤CDM model for a
variety of data cuts for Planck+WP. Each sub-plot is obtained from a separate CosmoMC analysis of the corresponding model. The
dashed lines show the results from Plik, an alternative likelihood discussed in Planck Collaboration XV (2013), run here with the
same SZ and CIB foreground priors as for the CamSpec results. For the extended models, the value of the additional parameter in
the base ⇤CDM model is shown with the vertical dashed lines. Lower: same as the upper set of panels, but for Planck+WP+highL.
Additional data from the high-` CMB experiments significantly reduce the foreground degeneracies.
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Fig. 2.— Predicted versus observed power spectra: This figure shows the di↵erence between the published 217 ⇥ 217 spectrum
binned with �` = 50 (points) and the spectrum predicted from the published Planck 100 ⇥ 100, 143 ⇥ 143, and 143 ⇥ 217 spectra
(filled band indicates 65% CL). Note that the points are systematically below the model for 1700 < ` < 1900 and above the model
for 2100 < ` < 2400. In the boxed insert, we show the predicted spectrum and observed spectrum for each multipole between
500 < ` < 600 where predicted and measured spectra agree remarkably well.

processing.

3. PLANCK SPECTRUM REVISITED

Motivated by the discrepancies discussed in §2, we have performed an analysis based on the publicly available
Planck data. Since the Planck team has only released survey and halfring maps rather than the detector set
maps used in their power spectrum analysis, we cannot directly reproduce their analysis (see Section 5.3 for
more discussion on the halfring maps). On the one hand this means we are using a subset of the Planck data
in the power spectrum measurements, and the error bars (for the same fsky) are larger in our analysis. On the
other hand, our approach of using only survey cross-spectra is much more robust to systematics that are common
between detectors observing the sky at the same time. In fact, in the analysis of ground-based CMB experiments,
most analyses use only cross-spectra of maps of the sky observed at di↵erent times (e.g., Das et al. 2013) as these
are less prone to common-mode systematics.

Fig. 3.— This figure shows the more conservative mask used in the Planck analysis in which foregrounds are modeled, SA24 (left)
and the less conservative mask used in our main analysis, SA47 (right). These masks are a product of a point source mask, a mask
that excludes pixels observed only in a single survey, and galactic masks with f

sky

= 35% for SA24 and 70% for SA47. With the
SA24 mask, there is 24.3% of the sky available for analysis, with the SA47 mask there is 46.8% of the sky available for analysis.

In order to reduce the cosmic variance errors in the power spectrum (and obviate the e↵ects of using a smaller
set of cross-spectra), we use more data by analyzing a larger fraction of the sky. This is possible because of
Planck’s wide frequency coverage which allows a much more aggressive approach to removing foregrounds than

D. Spergel et al. (2013)
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Reanalyzed by D. Spergel
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Fig. 2.— Predicted versus observed power spectra: This figure shows the di↵erence between the published 217 ⇥ 217 spectrum
binned with �` = 50 (points) and the spectrum predicted from the published Planck 100 ⇥ 100, 143 ⇥ 143, and 143 ⇥ 217 spectra
(filled band indicates 65% CL). Note that the points are systematically below the model for 1700 < ` < 1900 and above the model
for 2100 < ` < 2400. In the boxed insert, we show the predicted spectrum and observed spectrum for each multipole between
500 < ` < 600 where predicted and measured spectra agree remarkably well.
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3. PLANCK SPECTRUM REVISITED

Motivated by the discrepancies discussed in §2, we have performed an analysis based on the publicly available
Planck data. Since the Planck team has only released survey and halfring maps rather than the detector set
maps used in their power spectrum analysis, we cannot directly reproduce their analysis (see Section 5.3 for
more discussion on the halfring maps). On the one hand this means we are using a subset of the Planck data
in the power spectrum measurements, and the error bars (for the same fsky) are larger in our analysis. On the
other hand, our approach of using only survey cross-spectra is much more robust to systematics that are common
between detectors observing the sky at the same time. In fact, in the analysis of ground-based CMB experiments,
most analyses use only cross-spectra of maps of the sky observed at di↵erent times (e.g., Das et al. 2013) as these
are less prone to common-mode systematics.

Fig. 3.— This figure shows the more conservative mask used in the Planck analysis in which foregrounds are modeled, SA24 (left)
and the less conservative mask used in our main analysis, SA47 (right). These masks are a product of a point source mask, a mask
that excludes pixels observed only in a single survey, and galactic masks with f
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= 35% for SA24 and 70% for SA47. With the
SA24 mask, there is 24.3% of the sky available for analysis, with the SA47 mask there is 46.8% of the sky available for analysis.

In order to reduce the cosmic variance errors in the power spectrum (and obviate the e↵ects of using a smaller
set of cross-spectra), we use more data by analyzing a larger fraction of the sky. This is possible because of
Planck’s wide frequency coverage which allows a much more aggressive approach to removing foregrounds than
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Fig. 7.— Constraints on key parameters in the ⇤CDM model and extensions in the presence of high-frequency foreground cleaning.
Left panel: The top, middle and bottom panels show the marginalized one-dimensional likelihoods for the scalar spectral index, ns,
the matter density ⌦m and the Hubble constant H

0

in the ⇤CDM model. The solid blue line is the standard Planck result for the
CAMSpec likelihood including the 100⇥100, 143⇥143, 217⇥217 and 143⇥217 spectra. The dashed blue line shows the results when
the 217 ⇥ 217 spectra are not used; these correspond to results presented in Figure B3 of (Planck Collaboration (XVI) 2013). The
solid and dashed black lines show the same for the cleaned spectra presented here. Right panel : Constraints on the tensor-to-scalar
ratio (top left panel) and mass of the neutrino (top right panel) are weakened with cleaning of the spectra, and N

e↵

(bottom right
hand panel) shifts to values slightly more consistent with three neutrino species. The cleaned spectra do not show a preference for
running of the scalar spectral index.

computed from the cleaned season crosses, the power spectrum amplitude is higher for ` > 1500. This increased
amplitude leads to a shift in cosmological parameters. The most notable shifts are along a modest degeneracy
line between ns, H0 and ⌦m:

Fig. 8.— Constraints in the ⌦m �ns plane (left) and H
0

�⌦m plane (right) for various cleaning strategies and datasets, compared
to the Planck results. The circles show results obtained with the nominal Planck data, the squares show results from the hybrid
cleaning procedure, the diamond are obtained when only cleaning with the 353 GHz data, and the triangle when using the 545 GHz
data to clean the lower frequencies. For comparison, the results are shown for the season cross-spectra without additional cleaning
(upside-down triangle). The cosmological results are robust to a change in the cleaning procedure.

10

we expect the amplitudes of foreground parameters such as the point sources amplitudes at 217 GHz to reduce
dramatically, where the amplitude of Poisson point sources at 143 and 217 GHz are consistent with a non-detection.
The amplitude of the CIB sources at 217 GHz is also reduced from ACIB

217 = 27 (µK)2 to ACIB
217 < 10 (µK)2 at 95%

confidence, and the upper limit at 143 GHz also slightly reduces in amplitude.
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Fig. 9.— Constraints on �
8

for the hybrid cleaning method (in blue), in comparison to the constraints from the Planck CMB
constraints (Planck Collaboration (XVI) 2013, green filled contours), Planck SZ clusters (Planck Collaboration (XXI) 2013, black
unfilled contours), constraints on the SZ emission from cross correlation of CMB maps and galaxy cluster catalogs (Hajian et al.
2013, grey band) and from a combination of galaxy clustering and lensing (Cacciato et al. 2013, pink filled contours).

In the Planck team analysis (Planck Collaboration (XVI) 2013), the cosmological parameters change when the
analysis excludes the 217 ⇥ 217 spectrum, as shown in Figure 7. To a smaller extent this trend continues even
when using cleaned data. The shifts are now roughly consistent with expectations based on simulations, but they
could nevertheless indicate a remaining systematic in the 217 ⇥ 217 data that is not removed with the cleaning
procedure. We note that the best-fit parameters obtained in our hybrid cleaning analysis are very close to the
best-fit values for the Planck team analysis without the 217 ⇥ 217 power spectrum.

Fig. 10.— Constraints on ns � r plane. The black dots indicated the predicted values for m2�2 inflation with 50 and 60 e-folds
between reheating scale and the horizon scale today.

Using the 353 GHz and 545 GHz hybrid cleaning on the publicly available maps, we have also recomputed the
best-fit parameters for several extensions of the standard ⇤CDM model. Our re-analysis, shown in Figure 7, finds

D. Spergel et al. (2013)

§2. Observational Results
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CMB: Summary & Future
CMB plays a very important role in cosmology 
	 - precisely measure the basic parameters in ΛCDM universe

Neutrino Mass & Neff can be determined separately  
	 -             > 2.0eV is ruled out by CMB only 
!
	 - CMB lensing is potentially powerful but has a discrepancy 
!
	 - Neff is close to the standard value 3.046 
!
	 - need other probes! → 2nd talk!

Future 
- Planck’s next data release (w/ polarization) will be summer in 2014 
- Many terrestrial experiments coming! c.f. 西野さんのトーク
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3. Neutrino mass from Galaxy Clustering 
	 - Baryon Acoustic Oscillations 
	 - Shape of galaxy power spectrum  
	 - Redshift-Space Distortion

2. Brief review of LSS observables 
	 - Pros & Cons

4. Summary & Conclusion

1. How to surpass the CMB constraints? 
- add low-redshift distance information 
- add large-scale structure information
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How to go beyond CMB?

Planck Collaboration: Cosmological parameters
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degenerated with parameters which CANNOT be constrained by CMB
Planck paper XVI
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low redshift distance → break with H0 
low redshift fluctuation (or its growth)→ break even with 

Planck + WP

Planck + WP + BAO
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Neutrino Suppression
Neutrino free-streaming scale

36 3. COSMOLOGY AND MASSIVE NEUTRINOS: UP TO LINEAR THEORY

In order to characterize the evolution of perturbations and to comprehend the underlying
physics, we write the potential in the recent universe as follows:

φ(k, a) =
9

10
φp(k) T (k)

D1(a)

a
, (3.46)

where φp(k) is initial condition provided during inflation, and a factor of 9/10 will be explained
later. We divide conventionally physical effects into two parts, the transfer function, T (k), and
linear growth function D1(a). The transfer function describes the evolution of perturbations
through the epochs of horizon crossing and radiation/matter transition, while the growth func-
tion describes the scale-independent growth at late times. The transfer function is normalized
as T (k) → 1 for k → 0, and the growth function is normalized as D1(a) → a during MD era.
With a help of the Poisson equation at late times, −k2φ = 4πGa2ρ̄mδm, the matter perturbation
is also written as

δL
m(k, a) = −3

5

k2

Ωm0H2
0

φp(k) T (k) D1(a), (3.47)

where we have used the background equation 2, H2 = H2
0Ωm0a−3. Then the linear matter power

spectrum is

P L
m(k; a) = ∆2

R(k∗)

(
2

5Ωm0H2
0

)2 (
k

k∗

)ns

T (k)2D1(a)2, (3.48)

where we have used that the primordial power spectrum is given by Pφ = 4PR/9 = 4/9 ×
∆2

R(k∗)(k/k∗)ns−4. ∆2
R(k∗) and ns ∼ 1 are a normalization and a tilt of the primordial cur-

vature perturbation, and k∗ is a pivot scale conventionally set as k∗ = 0.002 Mpc−1. Another
convention of normalization, σ8, is defined by the variance of smoothed matter density in a
radius of R = 8h−1Mpc extrapolated at present time,

σ2
8 =

∫ dq

q
P L

m(q; z = 0)

[
3 sin(kR)

(kR)3
− 3 cos(kR)

(kR)2

]∣∣∣∣∣
R=8Mpc/h

. (3.49)

Below we abbreviate the superscript ‘L’ for simplicity.

3.2.2 Evolution of density perturbations with massless neutrinos

To gain the physical insight into linear power spectrum, we solve the perturbed equations
derived above in a simplified situation. Here, we first consider the case in which neutrinos are
massless. In this case, neutrinos are always treated as relativistic particles, and total matter
perturbation consists only of CDM plus baryon, i.e., δm = δcb at late time.

First consider the evolution deep in radiation era when photons are tightly coupled with
the baryons through Thomson scattering. In this case the photons can be treated as a fluid,
and the equations above can be solved approximately, i.e. δb ̸= δc. For the modes far outside
the horizon, kη ≪ 1, the equations are reduced to

− 3Hφ′ − 3H2φ = 4πGρmδm

(

1 +
4ργ

3ρm

)

, (3.50)

2We here neglect the dark energy density, but its effect can be taken into the growth function, D1(a) as
discussed later.
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where dΩn̂ is the differential angle of the momentum direction n̂a = qa/q. Before going to
the details of equations which govern neutrino perturbations, we define free-streaming scale
of neutrinos which is an effective horizon defined as the typical distance on which neutrinos
travel between initial and given time. This horizon is asymptotically equal to σv,νi/H, up to a
numerical factor, where σ2

v,νi is the velocity dispersion of neutrinos and given by

σ2
v,νi ≡

∫
d3q q2/m2[exp(q/Tν(z)) + 1]
∫

d3q /[exp(q/Tν(z)) + 1]
, (3.76)

=
15ζ(5)

ζ(3)

(
4

11

)2/3 T 2
γ0(1 + z)2

m2
ν,i

, (3.77)

where ζ(5) ≃ 1.037. More conventionally, the comoving wavenumber of neutrino free-streaming
is defined as the Jeans scale by replacing the sound speed with neutrinos’ thermal velocity,

kFS,i ≡
√

3

2

H(z)

(1 + z)σv,νi

≃ 0.0676
(

mν,i

0.1 eV

)
√

Ωw0(1 + z)−3(1+w0) + Ωm0(1 + z)3

(1 + z)2
hMpc−1. (3.78)

After neutrinos become non-relativistic, the comoving free-streaming scale continues to decrease
during matter domination as

λFS ≡ 2π/kFS ∝ (a2H)−1 ∝ t−1/3, (3.79)

while the comoving Hubble horizon increase as t1/3. As a result, for neutrinos become non-
relativistic during MD era, the comoving free-streaming wavenumber passes through a wavenum-
ber which corresponds to the Hubble horizon scale at which the neutrino become non-relativistic,
given by

knr,i ≡ H(znr,i)

1 + znr,i

≃ 0.0459 Ω1/2
m0

(
mν,i

0.1 eV

)1/2

hMpc−1, (3.80)

where we have used Eq. (3.24).
Fig. 3.3 describes the time-dependence of kFS,i, knr,i, and the comoving horizon scale, aH(a).

For modes of k > knr,i, neutrinos have become non-relativistic when the perturbations enter
the horizon. Clearly seen from the figure, since kFS,i < knr,i at early times, the neutrino’s
free-streaming effect cannot be appeared for modes of kFS,i < k < knr,i when the modes enter
the horizon. At late times, meanwhile, kFS,i > knr,i, and hence the modes of k > kFS,i can
be affected by the neutrino’s free-streaming as soon as the modes enter the horizon. In the
following, we refer to free-streaming scale as a characteristic scale which describes the effect of
massive neutrinos on the growth of perturbations.

The physical effect of neutrino free-streaming is obvious for its kinematic reasons: neutrinos
cannot be confined into regions smaller than the free-streaming scale. Therefore neutrinos
cannot contribute to gravity, and suppress the growth of perturbations at scales less than the
free-streaming scale. For a realistic mass of neutrino, mν,i ∼ 0.1 eV, typical scales of the

Linear matter power spectrum

46 3. COSMOLOGY AND MASSIVE NEUTRINOS: UP TO LINEAR THEORY

Figure 3.4: (Upper panel) The linear matter power spectrum with (red solid) and without
massive neutrinos (blue dashed) at z = 0 in a flat universe with wm = 0.147, wb = 0.0245, Ωw =
0.7, h = 0.7, w0 = −1, ∆2

R(k∗) = 2.35 × 10−9, and ns = 0.95. (Middle panel) The fractional
difference between linear matter power spectrum with and without massive neutrinos. This
figure describes the neutrino suppression effect. For comparison, we show the results at different
redshifts. (Lower panel) The fν dependence of the ratio, P L,fν ̸=0

m /P L,fν ̸=0
m . Simultaneously we

show the approximation, 1 − 8fν .

In Fig. 3.4, we show the suppression effect due to massive neutrinos. From the upper panel
of Fig. 3.4, we see that amplitudes at small scales are clearly suppressed, while there is no
difference at large scales. More quantitatively, the neutrino suppression effect is described
by the fractional difference between the spectra with massive neutrinos and with massless
neutrinos, with fixed Ωm0h2. As is shown above, the ratio depends on the growth factor, and
therefore on redshift as well as wavenumber, seen from the middle panel of the figure. At
sufficiently small scales, the ratio at z = 0 approaches to a constant value which is roughly
estimated by 1 − 8fν . In the lower panel of Fig. 3.4, we compare the linear approximation,
1 − 8fν with the numerical solution with the Boltzmann code, CAMB. They are actually in
agreement with each other, though there are some discrepancies depending on the value of fν .
However, we address that the constant behavior −8fν is no longer valid at small scales where
the linear theory breaks down [109]. In order to predict accurately the power spectrum at the
small scales where neutrino suppression effect appears, we should go beyond the linear theory,
and we will later discuss this issue in greater details in next chapter.
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図 3. ニュートリノのフリーストリーミングの概念図．
大規模構造を形成する物質の要素，冷たいダー
クマター (CDM)，バリオン (b)に比べて，軽い
ニュートリノ (ν) は速度分散が大きいためにフ
リーストリーミングスケール (λFS) より小さい
スケールにはとどまることができない．従って，
λFS 以下のスケールの構造の成長は，ニュートリ
ノが重力として寄与しない分，ニュートリノ質量
が 0 の場合に比べて抑制される．

ラスタリング分布に焦点を絞り，筆者のグループ
が行ってきた，銀河クラスタリング分布の非線形
進化に対する有質量ニュートリノの影響，さらに
はそれから得られるニュートリノ質量の制限にお
ける研究について議論しよう．

4. 銀河のクラスタリング分布を用いた
ニュートリノ質量の制限

4.1 銀河サーベイの利点と理論的課題
まず銀河のクラスタリング分布を測定するよ

うな大規模な銀河の分光サーベイについて述べ
ておこう．近年，アメリカを中心とした Sloan
Digital Sky Survey (SDSS)，オーストラリアの
WiggleZ，日本のすばる望遠鏡を用いた将来計画
Subaru Measurements of Imaging and Redshift

波数大スケール 小スケール

パ
ワ
ー
ス
ペ
ク
ト
ル
 (ゆ
ら
ぎ
の
大
き
さ
) SDSS赤色銀河のパワースペクトル

物質ゆらぎの線形パワースペクトルニュートリノ質量 0
ニュートリノ質量 1.0eV

？

図 4. 線形理論により予言される物質ゆらぎのパワース
ペクトル (破線) と，SDSS 赤色銀河で測定され
た銀河のパワースペクトル (データ点)．参考のた
め，ニュートリノ質量が 0 の場合 (黒の破線) と
ニュートリノが質量をもつ場合 (0.1eV，青の破
線) の両方を示した．

(SUMIRe)の分光計画であるPrime Focus Spec-
trograph (PFS)，さらには将来の衛星計画である
WFIRST等，盛んに銀河分光サーベイが提案さ
れているが，その主な目的はバリオン振動の高精
度測定によってダークエネルギーの性質に迫るこ
とである．バリオン振動スケールとは，CMBで
測定されている初期宇宙の光子・バリオン流体の
音速ホライズンスケールであり，これを宇宙膨張
を測定するためのロバストな標準ものさしとして
用いることで宇宙膨張の様子を知ろうというので
ある．銀河のクラスタリング分布に現れるバリオ
ン振動スケールは約 150Mpcという非常に大きな
スケールなので，測定には非常に大規模なサーベ
イが必要になるが，非常に興味深いのは，ニュー
トリノのフリーストリーミングスケールが偶然に

*5 厳密には各世代の質量固有値のニュートリノ質量それぞれに対してニュートリノのフリーストリーミングスケールは異
なるので，各世代のニュートリノ質量を決定することが原理的には可能である．しかし，現実的にはニュートリノ振動
実験の結果を信じれば，各世代間の質量差は非常に小さく，それによる各ニュートリノのフリーストリーミングスケー
ルにおける違いも非常に小さい．
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Neutrino Suppression in Nonlinear theory
N-body simulation

simulation. The total CPU consumption for simulations with the smallest neutrino mass

Σmν =0.15 eV is thereby about 10% larger than that for the largest mass we investigated

Σmν =0.6 eV.
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Figure 1: Density slices of thickness 6 h−1 comoving Mpc at z = 3 extracted from two 60h−1 Mpc
hydrodynamical simulations with gas and dark matter and no neutrinos. The right column shows
a simulation that includes neutrinos with Σmν =1.2 eV. The presence of neutrinos (bottom panel,
green) clearly affects both the gas (red) and the dark matter (blue) distribution.

In Figure 1 we show illustrative slices of the density distribution of thickness 6/h

comoving Mpc extracted from two 60/h comoving Mpc simulations at z = 3 with and

– 8 –
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 linear theory 

Figure 3: Comparison between the particle based and grid based implementation of neutrinos for
simulations with large and small box size. Ratio of matter power spectra for simulations with and
without neutrinos as described in the text. The thin curves refer to simulations with a large linear
box size (512/hMpc): the grid based neutrino implementation (thin red dashed curves) and the
particle based neutrino implementation (thin black continuous curves) at z = 0 and z = 3. The
thick curves refer to simulations with the default linear box size of 60/hMpc: with the grid based
(thick red dashed curve) and the particle based implementation of neutrinos, (black continuous
curve). The dotted curves show the predictions of linear theory at z = 0 and z = 3. The shaded
area indicates approximately the scales that are probed by the SDSS flux power spectrum data set.

this discrepancy as due to the fact that in simulations with the grid-based implementation

the enforced linear evolution of the neutrinos with the same phases prevents a proper

response to the dark matter growth. At the small scales Fourier mode mixing is important

for the phase association and can alter the linear theory picture significantly. This appears

to result in a significantly larger discrepancy between simulations with the grid and particle

based implementations on the scales and redshifts relevant for Lyman-α forest data. The

differences between should thereby be mainly due to the fact that the non-linear evolution

at small scales is not properly reproduced by the grid method. We will therefore focus

mainly on simulations with the particle based implementation in the rest of the paper,

keeping in mind that our results are affected by Poisson noise in the neutrino components

at the smallest scales probed.

Note that increasing the accuracy of the simulations with the particle based neutrino

implementation further by pushing up the number of neutrino particles in order to decrease

– 11 –

Just has started!



!28

LSS Observables 
3

Probe Current∑
mν (eV)

Forecast∑
mν (eV)

Key Systematics Current Surveys Future Surveys

CMB Primordial 1.3 0.6 Recombination WMAP, Planck None

CMB Primordial +
Distance

0.58 0.35 Distance measure-
ments

WMAP, Planck None

Lensing of CMB ∞ 0.2− 0.05 NG of Secondary
anisotropies

Planck, ACT [39],
SPT [96]

EBEX [57], ACTPol,
SPTPol, POLAR-
BEAR [5], CMBPol
[6]

Galaxy Distribution 0.6 0.1 Nonlinearities, Bias SDSS [58, 59], BOSS
[82]

DES [84], BigBOSS [81],
DESpec [85], LSST [92],
Subaru PFS [97], HET-
DEX [35]

Lensing of Galaxies 0.6 0.07 Baryons, NL, Photo-
metric redshifts

CFHT-LS [23], COS-
MOS [50]

DES [84], Hy-
per SuprimeCam,
LSST [92], Euclid [88],
WFIRST[100]

Lyman α 0.2 0.1 Bias, Metals, QSO
continuum

SDSS, BOSS, Keck BigBOSS[81], TMT[99],
GMT[89]

21 cm ∞ 0.1− 0.006 Foregrounds, Astro-
physical modeling

GBT [11], LOFAR
[91], PAPER [53],
GMRT [86]

MWA [93], SKA [95],
FFTT [49]

Galaxy Clusters 0.3 0.1 Mass Function, Mass
Calibration

SDSS, SPT, ACT,
XMM [101] Chan-
dra [83]

DES, eRosita [87], LSST

Core-Collapse Super-
novae

∞ θ13 > 0.001∗ Emergent ν spectra SuperK [98],
ICECube[90]

Noble Liquids, Gad-
zooks [7]

Table I: Cosmological probes of neutrino mass. “Current” denotes published (although in some cases controversial, hence the
range) 95% C.L/ upper bound on

∑
mν obtained from currently operating surveys, while “Reach” indicates the forecasted 95%

sensitivity on
∑

mν from future observations. These numbers have been derived for a minimal 7-parameter vanilla+mν model.
The six other parameters are: the amplitude of fluctuations, the slope of the spectral index of the primordial fluctuations, the
baryon density, the matter density, the epoch of reionization, and the Hubble constant.
∗ If the neutrinos have the normal mass hierarchy, supernovae spectra are sensitive to θ13 ∼ 10−3. The inverted hierarchy
produces a different signature, but one that is insensitive to θ13.

A. Primordial Cosmic Microwave Background

In the first row of Table I, we report the constraints obtained using 2-point statistics of the CMB: temperature and
polarization auto-spectra and the temperature-polarization cross-spectrum. Massive neutrinos increase the anisotropy
on small scales because the decaying gravitational potentials enhance the photon energy density fluctuation (see, e.g.,
[21, 48]). Also, the sound horizon, which dictates the position of the acoustic peaks, shifts due to the slightly different
expansion history caused by massive neutrinos. The current WMAP 7-year dataset constrains the sum of neutrino
masses to 1.3 eV at 95% c.l. [44] within the standard cosmological model, ΛCDM. Planck data alone will constrain
Σmν to 0.6 eV at 95% C.L. (see, e.g., [19]). This constraint should be considered as the most conservative and
reliable cosmological constraint on neutrino masses. A tighter constraint on the neutrino masses can be obtained by
combining CMB observations with measurements of the Hubble constant H0 and cosmic distances such as from Type
Ia supernovae and Baryon Acoustic Oscillations (BAO). The WMAP7+BAO+H0 analysis of [44] reports a constraint
of 0.58 eV at 95% C.L., while a constraint about a factor 2 smaller could be achieved when the Planck data will be
combined with similar datasets.
The key theoretical systematics in confronting the CMB predictions with data have been overcome. The physics is

linear, so all codes agree with the requisite precision. Precise constraints require careful treatment of many of the ex-
cited states of hydrogen during recombination [62], but here too recent advances [4] have attained the precision needed
to extract accurate information from Planck. There are uncertainties associated with the distance measurements given
by H0 and BAO, but again these seem to be under tighter control.

Abazajian et al. (2011, 2013)

Important to trace characteristic time and scale dependence

Key issue in each observable is how to control systematics
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PLANCK CMB Lensing
Planck XVII (2013)

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

L

Fig. 11. Replotting of Fig. 10, removing 100 GHz for easier
comparison of 143 and 217 GHz. Also plotted are the SPT band-
powers from van Engelen et al. (2012), and the ACT bandpow-
ers from Das et al. (2013). All three experiments are very consis-
tent. The lower panel shows the di↵erence between the measured
bandpowers and the fiducial best-fit ⇤CDM model.

– in Planck Collaboration XVI (2013) to derive parameter con-
straints for the six-parameter ⇤CDM model and well-motivated
extensions. Lensing also a↵ects the power spectrum, or 2-point
function, of the CMB anisotropies, and this e↵ect is accounted
for routinely in all Planck results. On the angular scales rele-
vant for Planck, the main e↵ect is a smoothing of the acoustic
peaks and this is detected at around 10� in the Planck tempera-
ture power spectrum (Planck Collaboration XVI 2013). The in-
formation about C��L that is contained in the lensed temperature
power spectrum for multipoles ` <⇠ 3000 is limited to the ampli-
tude of a single eigenmode (Smith et al. 2006). In extensions of
⇤CDM with a single additional late-time parameter, lensing of
the power spectrum itself can therefore break the geometric de-
generacy (Stompor & Efstathiou 1999; Sherwin et al. 2011; van
Engelen et al. 2012; Planck Collaboration XVI 2013). As dis-
cussed in Appendix D and Schmittfull et al. (2013), cosmic vari-
ance of the lenses produces weak correlations between the CMB
2-point function and our estimates of C��L , but they are small
enough that ignoring the correlations in combining the two like-
lihoods should produce only sub-percent underestimates of the
errors in physical cosmological parameters.

In the following, we illustrate the additional constraining
power of our C��L measurements in ⇤CDM models and one-
parameter extensions, highlighting those results from Planck
Collaboration XVI (2013) where the lensing likelihood is influ-
ential.

6.1.1. Six-parameter ⇤CDM model

In the six-parameter ⇤CDM model, the matter densities, Hubble
constant and spectral index of the primordial curvature perturba-
tions are tightly constrained by the Planck temperature power
spectrum alone. However, in the absence of lensing the am-
plitude As of the primordial power spectrum and the reioniza-
tion optical depth ⌧ are degenerate, with only the combination
Ase�2⌧, which directly controls the amplitude of the anisotropy
power spectrum on intermediate and small scales being well de-
termined. This degeneracy is broken by large-angle polarization
since the power from scattering at reionization depends on the
combination As⌧2. In this first release of Planck data, we use
the WMAP nine-year polarization maps (Bennett et al. 2012) in
combination with Planck temperature data. With this data com-
bination, C��L is rather tightly constrained in the ⇤CDM model
(see Fig. 12) and the direct measurements reported here provide
a non-trivial consistency test of the model.

The eight C��L bandpowers used in the lensing likelihood are
compared to the expected spectrum in Fig. 12 (upper-left panel).
For the latter, we have used parameter values determined from
the main Planck likelihood in combination with WMAP polar-
ization (hereafter denoted WP) and small-scale power spectrum
measurements (hereafter highL) from ACT (Das et al. 2013) and
SPT (Reichardt et al. 2012)†. In this plot, we have renormalized
the measurements and their error bars (rather than the theory) us-
ing the best-fit model with a variant of the procedure described
in Sect. 5.3. Since the lensed temperature power spectrum in the
best-fit model is very close to that in the fiducial model used
to normalise the power spectrum estimates throughout this pa-
per, the power spectrum renormalisation factor (1 + �TT

L )2 of
Eq. (44) is less than 0.5% in magnitude. The predicted C��L in
the best-fit model di↵ers from the fiducial model by less than
2.5% for L < 1000. The best-fit model is a good fit to the mea-
surements, with �2 = 10.9 and the corresponding probability
to exceed equal to 21%. Significantly, we see that the ⇤CDM
model, calibrated with the CMB fluctuations imprinted around
z = 1100, correctly predicts the evolution of structure and geom-
etry at much lower redshifts. The 68% uncertainty in the ⇤CDM
prediction of C��L is shown by the dashed lines in the upper-left
panel of Fig. 12. We can assess consistency with the direct mea-
surements, properly accounting for this uncertainty, by introduc-
ing an additional parameter A��L that scales the theory C��L in the
lensing likelihood. (Note that we choose not to alter the lensing
e↵ect in CTT

` .) As reported in Planck Collaboration XVI (2013),
we find

A��L = 0.99 ± 0.05 (68%; Planck+lensing+WP+highL),

in excellent agreement with A��L = 1.
An alternative route to breaking the As-⌧ degeneracy is pos-

sible for the first time with Planck. Since C��L is directly propor-
tional to As, the lensing power spectrum measurements and the
smoothing e↵ect of lensing in CTT

` (which at leading order varies
as A2

s e�2⌧) can separately constrain As and ⌧ without large-angle
polarization data. The variation of C��L with ⌧ in ⇤CDM models

† As discussed in detail in Planck Collaboration XVI (2013), the pri-
mary role of the ACT and SPT data in these parameter fits is to constrain
more accurately the contribution of extragalactic foregrounds which
must be carefully modelled to interpret the Planck power spectra on
small scales. For ⇤CDM, the foreground parameters are su�ciently de-
coupled from the cosmological parameters that the inclusion of the ACT
and SPT data has very little e↵ect on the cosmological constraints.
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Fig. 12. Upper left: Planck measurements of the lensing power spectrum compared to the ⇤CDM mean prediction and 68% con-
fidence interval (dashed lines) for models fit to Planck+WP+highL (see text). The eight bandpowers are those used in the Planck
lensing likelihood; they are renormalized, along with their errors, to account for the small di↵erences between the lensed CTT

` in
the best-fit model and the fiducial model used throughout this paper. The error bars are the ±1� errors from the diagonal of the
covariance matrix. The colour coding shows how C��L varies with the optical depth ⌧ across samples from the ⇤CDM posterior
distribution. Upper right: as upper-left but using only the temperature power spectrum from Planck. Lower left: as upper-left panel
but in models with spatial curvature. The colour coding is for ⌦K . Lower right: as upper-left but in models with three massive
neutrinos (of equal mass). The colour coding is for the summed neutrino mass

P
m⌫.

constrained only by the Planck temperature power spectrum is
illustrated in the upper-right panel of Fig. 12, and suggests that
the direct C��L measurements may be able to improve constraints
on ⌧ further. This is indeed the case, as shown in Fig. 13 where
we compare the posterior distribution of ⌧ for the Planck temper-
ature likelihood alone with that including the lensing likelihood.
We find
⌧ = 0.097 ± 0.038 (68%; Planck)
⌧ = 0.089 ± 0.032 (68%; Planck+lensing).
At 95% confidence, we can place a lower limit on the optical
depth of 0.04 (Planck+lensing). This very close to the optical
depth for instantaneous reionization at z = 6, providing further
support for reionization being an extended process.

The ⌧ constraints via the lensing route are consistent with,
though weaker, than those from WMAP polarization. However,
since the latter measurement requires very aggressive cleaning
of Galactic emission (see e.g. Fig. 17 of Page et al. 2007), the
lensing constraints are an important cross-check.

6.1.2. Effect of the large and small scales on the
six-parameter ⇤CDM model

Before exploring the further parameters that can be constrained
with the lensing likelihood, we test the e↵ect on the ⇤CDM
model of adding the large-scale (10  L  40) and small-scale
(400  L  2048) lensing data to our likelihood. Adding addi-
tional data will produce random shifts in the posterior distribu-
tions of parameters, but these should be small here since the mul-
tipole range 40  L  400 is designed to capture over 90% of the
signal-to-noise (on an amplitude measurement). If the additional
data is expected to have little statistical power, i.e., the error bars
on parameters do not change greatly, but its addition produces
large shifts in the posteriors, this would be symptomatic either
of internal tensions between the data or an incorrect model.

In Fig. 14, we compare the posterior distributions of the
⇤CDM parameters for Planck+WP+highL alone with those af-
ter combining with various lensing likelihoods. Adding our fidu-
cial lensing likelihood (second column) reduces the errors on pa-
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PLANCK SZ

Planck Collaboration: Cosmology from SZ clusters counts

Table 3. Constraints from clusters on �8(⌦m/0.27)0.3.

Experiment CPPPa MaxBCGb ACTc SPT Planck SZ

Reference Vikhlinin et al. Rozo et al. Hasselfield et al. Reichardt et al. This work
Number of clusters 49+37 70810 15 100 189
Redshift range [0.025,0.25] and [0.35,0.9] [0.1,0.3] [0.2,1.5] [0.3,1.35] [0.0,0.99]
Median mass (1014h�1Msol) 2.5 1.5 3.2 3.3 6.0
Probe N(z,M) N(M) N(z,M) N(z,YX) N(z)
S/N cut 5 (N200 > 11) 5 5 7
Scaling YX–TX , Mgas N200–M200 several LX–M, YX YSZ–YX
�8(⌦m/0.27)0.3 0.784 ± 0.027 0.806 ± 0.033 0.768 ± 0.025 0.767 ± 0.037 0.782 ± 0.010

a The degeneracy is �8(⌦m/0.27)0.47.
b The degeneracy is �8(⌦m/0.27)0.41.
c For ACT we choose the results assuming the universal pressure profile derived scaling law in this table (constraints with other scalings relations

are shown in Fig. 10).

the solid symbol and error bar. For SPT we show the “cluster-
only” constraints from Reichardt et al. (2012a). The two error
bars of the Planck SZ cluster red point indicate the statistical
and systematic (1 � b free in the range [0.7, 1.0]) error bars.
The figure thus shows good agreement amongst all cluster ob-
servations, whether in optical, X-rays, or SZ. Table 3 compares
the different data and assumptions of the different cluster-related
publications.

6.2. Consistency with the Planck y-map

In a companion paper (Planck Collaboration XXI 2013), we per-
formed an analysis of the SZ angular power spectrum derived
from the Planck y-map obtained with a dedicated component-
separation technique. For the first time, the power spectrum has
been measured at intermediate scales (50  `  1000). The
same modelling as in Sect. 2 and Taburet et al. (2009, 2010)
has been used to derive best-fit values of ⌦m and �8, assum-
ing the universal pressure profile (Arnaud et al. 2010b), a bias
1�b = 0.8, and the best-fit values for other cosmological param-
eters from Planck Collaboration XVI (2013). The best model ob-
tained, shown in Fig. 7 as a dashed line, confirms the consistency
between the Planck SZ number counts and the signal observed
in the y-map.

6.3. Comparison with Planck primary CMB constraints

We now compare the Planck SZ cluster constraints to those from
the analysis of the primary CMB temperature anisotropies given
in Planck Collaboration XVI (2013). In that analysis �8 is de-
rived from the standard six ⇤CDM parameters.

The primary CMB constraints, in the (⌦m,�8) plane, dif-
fer significantly from our constraints, in favouring higher val-
ues of each parameter, as seen in Fig. 11. This leads to a larger
number of predicted clusters than actually observed (see Fig. 7).
There is therefore some tension between the results from this
analysis and our own. Figure 10 illustrates this with a compar-
ison of three CMB analyses5 (Planck Collaboration XVI 2013;
Story et al. 2012; Hinshaw et al. 2012) with cluster constraints
in terms of �8(⌦m/0.27)0.3.

5 For Planck CMB we derived the constraints from the chain corre-
sponding to column 1 of Table 2 of Planck Collaboration XVI (2013).
Note that the SPT results may be biased low by systematics, as dis-
cussed in the appendix of Planck Collaboration XVI (2013).

Fig. 11. 2D ⌦m–�8 likelihood contours for the analysis with
Planck CMB only (red); Planck SZ + BAO + BBN (blue); and
the combined Planck CMB + SZ analysis where the bias (1 � b)
is a free parameter (black).

It is possible that the tension results from a combination of
some residual systematics with a substantial statistical fluctu-
ation. Enough tests and comparisons have been made on the
Planck data sets that it is plausible that at least one discrepancy
at the two or three sigma level will arise by chance. Nevertheless,
it is worth considering the implications of the discrepancy being
real.

As we have discussed, the modelling of the cluster gas
physics is the most important uncertainty in our analysis, in
particular the mass bias (1 � b) between the hydrostatic and
true masses. While we have argued that the preferred value is
(1 � b) ' 0.8, with a plausible range from 0.7 to 1, a signifi-
cantly lower value would substantially alleviate the tension be-
tween CMB and SZ constraints. Performing a joint analysis us-
ing the CMB likelihood presented in Planck Collaboration XV
(2013) and the cluster likelihood of this paper, we find (1 � b) =
0.55± 0.06 and the black contours shown in Fig. 11 (in that case
(1 � b) was sampled in the range [0.1,1.5]). Such a large bias
is difficult to reconcile with numerical simulations, and cluster
masses estimated from X-rays and from weak lensing do not typ-
ically show such large offsets. Some systematic discrepancies
in the relevant scaling relations were, however, identified and
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Figure 5: Comparison of the 68% and 95% C.L. contours in the ⌦
m
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8

plane and degeneracy curves
obtained using the matter (blue) and cold dark matter (green) prescription. We show the results when
the sum of the neutrino masses is split between one massive neutrino family (left panel) and three
degenerate neutrino families (right panel). Also shown in the right panel in orange the contours from
PlanckCMB+BAO datasets for a ⇤CDM+

P
m

⌫

model.

Using the orange contours as a reference one can see that the shift of the contours caused by the
CDM prescription goes in the direction of increasing the tension with the Planck+BAO results. This
means that when using the CDM prescription in trying to reconcile the Planck CMB measurements
with cluster number counts, when extending the ⇤CDM model to massive neutrinos, a larger

P
m

⌫

value will result from the combination of the two datasets.
The e↵ects of the usage of the CDM prescription on parameter estimation are clearly visible but

with low statistical significance for the cluster sample chosen for this work. However, owing to the
much stronger constraining power expected from upcoming and future cluster surveys, corrections to
the �

8

-⌦
m

degeneracy direction of the order of �� ⇠ 0.1 would o↵sets the resulting constraints by a
statistically significant amount [57, 58].

6 Summary and perspectives

By using a set of large box-size N-body simulations containing CDM and neutrinos particles we have
studied the abundance of dark matter haloes, identified using the SO criterion, in cosmological models
with massive neutrinos. The SO haloes have been extracted from the N-body simulations by running
the SUBFIND algorithm on top of the CDM particle distribution to avoid spurious mass contamination
in the low mass haloes from unbounded neutrino particles. We have however explicitly checked that
our results do not change if SUBFIND is run on top of the total matter density field. We have compared
the abundance of dark matter haloes in cosmologies with massless and massive neutrinos with the
Tinker fitting formula along with the matter prescription and the cold dark matter prescription. In
both prescriptions we use ⇢

cdm

= ⇢
m

� ⇢
⌫

instead of ⇢
m

when setting the relation between the halo
mass and the radius in the top-hat window function: M = 4⇡⇢

cdm

R3/3. However, in the cold dark

– 11 –

Costanzi et al. (2013)

But halo is composed only of CDM plus 
baryon (not neutrino)!

Ichiki & Takada (2010) 
Navarro, S.S. et al. (2013)

conuting # of SZ clusters
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Why galaxy clustering?
Galaxy clustering

Reasons why 3D large-scale galaxy clustering is interesting: 
1. By eye, looks like                    (c.f. CMB:                               ) 
!
2. Traces underlying matter distribution 

- Baryon Acoustic Oscillations ~150Mpc → dark energy 
- mildly nonlinear regime → initial condition, neutrino mass 
- Redshift Space Distortions → modified gravity 

!
3. Observation is not technically challenging 

1)$Measured$redshifts$give$3Kd$galaxy$distribution,$which$has$
many$more$modes$than$projected$quantities$like$CMB$or$weak$
lensing$
2)$Easy$to$measure:$effects$of$order$unity$$
$

SDSS  
LRGS 
Main sample 

State$of$the$art:$Sloan$Digital$Sky$Survey$

2pt statistics
Power Spectrum in Fourier Space

Correlation Function in Configuration Space
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Baryon Acoustic Oscillations (BAOs)

Sound waves traveling in the baryon-photon fluid

©EisensteinThe sound horizon at recombination can  
be seen as acoustic peaks in CMB

After baryon-dragging epoch,  
BAOs are imprinted into matter  
!
!
!
But suppressed by  
!

Sunyaev & Zel’dovich 1970, Peebles & Yu 1970...

Planck Collaboration 2013

photon

3448 L. Anderson et al.

Figure 7. Histogram of (α − ⟨α⟩)/σα measured from ξ (r) of the post-
reconstruction mocks, where ⟨α⟩ is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − ⟨α⟩)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − ⟨w(r)n(r)⟩
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r⟨w(r)n(r)⟩2
}1/2

, (32)

and ⟨w(r)n(r)⟩ is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

C⃝ 2012 The Authors, MNRAS 427, 3435–3467
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS
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regime by a factor of!4. The LRG sample should therefore out-
perform these surveys by a factor of 2 in fractional errors on large
scales. Note that quasar surveys cover much more volume than
even the LRG survey, but their effective volumes are worse, even
on large scales, due to shot noise.

3. THE REDSHIFT-SPACE CORRELATION FUNCTION

3.1. Correlation Function Estimation

In this paper, we analyze the large-scale clustering using the
two-point correlation function (Peebles 1980, x 71). In recent
years, the power spectrum has become the common choice on
large scales, as the power in different Fourier modes of the linear
density field is statistically independent in standard cosmology
theories (Bardeen et al. 1986). However, this advantage breaks
down on small scales due to nonlinear structure formation, while
on large scales elaborate methods are required to recover the sta-
tistical independence in the face of survey boundary effects (for
discussion, see Tegmark et al. 1998). The power spectrum and
correlation function contain the same information in principle,
as they are Fourier transforms of one another. The property of
the independence of different Fourier modes is not lost in real
space, but rather it is encoded into the off-diagonal elements of
the covariance matrix via a linear basis transformation. One must
therefore accurately track the full covariance matrix to use the
correlation function properly, but this is feasible. An advantage
of the correlation function is that, unlike in the power spectrum,
small-scale effects such as shot noise and intrahalo astrophysics
stay on small scales, well separated from the linear regime fluc-
tuations and acoustic effects.

We compute the redshift-space correlation function using
the Landy-Szalay estimator (Landy & Szalay 1993). Random
catalogs containing at least 16 times asmany galaxies as the LRG
sample were constructed according to the radial and angular se-
lection functions described above. We assume a flat cosmology
with !m ¼ 0:3 and !" ¼ 0:7 when computing the correlation
function. We place each data point in its comoving coordinate
location based on its redshift and compute the comoving sep-
aration between two points using the vector difference. We use
bins in separations of 4 h#1 Mpc from 10 to 30 h#1 Mpc and
bins of 10 h#1 Mpc thereafter out to 180 h#1 Mpc, for a total of
20 bins.

We weight the sample using a scale-independent weighting
that depends on redshift. When computing the correlation func-
tion, each galaxy and random point is weighted by 1/½1þ n(z)Pw&
(Feldman et al. 1994), where n(z) is the comoving number density
and Pw ¼ 40;000 h#3 Mpc3. We do not allow Pw to change with
scale so as to avoid scale-dependent changes in the effective bias
caused by differential changes in the sample redshift. Our choice
of Pw is close to optimal at k ' 0:05 h Mpc#1 and within 5% of
the optimal errors for all scales relevant to the acoustic oscillations
(kP0:15 h Mpc#1). At z < 0:36, nPw is about 4, while nPw ' 1
at z ¼ 0:47. Our results do not depend on the value of Pw; chang-
ing the value wildly alters our best-fit results by only 0.1 !.

Redshift distortions cause the redshift-space correlation func-
tion to vary according to the angle between the separation vector
and the line of sight. To ease comparison to theory, we focus
on the spherically averaged correlation function. Because of the
boundary of the survey, the number of possible tangential sep-
arations is somewhat underrepresented compared to the number
of possible line-of-sight separations, particularly at very large
scales. To correct for this, we compute the correlation functions
in four angular bins. The effects of redshift distortions are ob-
vious: large-separation correlations are smaller along the line-of-

sight direction than along the tangential direction. We sum these
four correlation functions in the proportions corresponding to
the fraction of the sphere included in the angular bin, thereby re-
covering the spherically averaged redshift-space correlation func-
tion. We have not yet explored the cosmological implications of
the anisotropy of the correlation function (Matsubara & Szalay
2003).

The resulting redshift-space correlation function is shown in
Figure 2. A more convenient view is shown in Figure 3, where
we have multiplied by the square of the separation, so as to flatten
out the result. The errors and overlaid models will be discussed
below. The bump at 100 h#1 Mpc is the acoustic peak, to be de-
scribed in x 4.1.

The clustering bias of LRGs is known to be a strong function
of luminosity (Hogg et al. 2003; Eisenstein et al. 2005; Zehavi
et al. 2005a), and while the LRG sample is nearly volume-limited
out to z ! 0:36, the flux cut does produce a varying luminosity
cut at higher redshifts. If larger scale correlations were prefer-
entially drawn from higher redshift, we would have a differential
bias (see discussion in Tegmark et al. 2004a). However, Zehavi
et al. (2005a) have studied the clustering amplitude in the two
limiting cases, namely the luminosity threshold at z < 0:36 and
that at z ¼ 0:47. The differential bias between these two samples
on large scales is modest, only 15%. We make a simple param-
eterization of the bias as a function of redshift and then compute
b2 averaged as a function of scale over the pair counts in the
random catalog. The bias varies by less than 0.5% as a function
of scale, and so we conclude that there is no effect of a possible
correlation of scale with redshift. This test also shows that the

Fig. 2.—Large-scale redshift-space correlation function of the SDSS LRG
sample. The error bars are from the diagonal elements of the mock-catalog co-
variance matrix; however, the points are correlated. Note that the vertical axis
mixes logarithmic and linear scalings. The inset shows an expanded view with a
linear vertical axis. The models are !mh

2 ¼ 0:12 (top line), 0.13 (second line),
and 0.14 (third line), all with !bh

2 ¼ 0:024 and n ¼ 0:98 and with a mild non-
linear prescription folded in. The bottom line shows a pure CDM model (!mh

2 ¼
0:105), which lacks the acoustic peak. It is interesting to note that although the
data appear higher than the models, the covariance between the points is soft as
regards overall shifts in "(s). Subtracting 0.002 from "(s) at all scales makes the
plot look cosmetically perfect but changes the best-fit #2 by only 1.3. The bump
at 100 h#1 Mpc scale, on the other hand, is statistically significant. [See the electronic
edition of the Journal for a color version of this figure.]

DETECTION OF BARYON ACOUSTIC PEAK 563No. 2, 2005

galaxy ξ(s)
Hu & Sugiyama 1996
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BAO as a ‘standard ruler’

Alcock & Paczynski (1979)
When making a 3D map, d-z relation is necessary

true cosmology: isotropic

fiducial (wrong) cosmology: anisotopic

obs

In the BAO business: very robust against systematics

1D BAO: spherically-averaged 
!
2D BAO (AP test):  
!
＊ shape of P(k) can be also useful for the AP signal

Padmanabhan & White 2006
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Redshift Space Distortion (RSD)

RSD in a qualitative picture & linear theory48 3. COSMOLOGY AND MASSIVE NEUTRINOS: UP TO LINEAR THEORY

Figure 3.5: A schematic picture of redshift distortions. Arrows denote direction and magnitude
of velocity fields of galaxies. At large scales where the peculiar velocity of galaxies can be
treated at linear level, the galaxy density fields squash along the line-of-sight. In the case of
nonlinear collapse at small scales, galaxies have large velocity with random direction. As a
result, the structure become elongated, which is so called the Finger-of-God effect. The FOG
effect suppress the clustering for direction of line-of-sight.

where ẑ is an unit vector in the line-of-sight direction. We have adopted the distant-observer
approximation, which ignores the radial dependence of redshift-space distortion. The number
of galaxies in a particular region is preserved, i.e., ns(xs)d3xs = n(x)d3x, and the Jacobian of
this transformation is given by

J =

∣∣∣∣∣
dx

ds

∣∣∣∣∣ =

(

1 +
∂

∂z

[
v⃗ · ẑ

aH(a)

])−1 (

1 +
v⃗ · ẑ

aH(a)x

)−2

. (3.107)

The second bracket can be safely approximated to be unity, since the derivative term in the
first bracket is larger than the second by a factor of kx and we are interested only in the modes
of kx ≫ 1 [110]. Then, the Jacobian becomes

J ≃
(

1 +
∂

∂z

[
v⃗ · ẑ

aH(a)

])−1

. (3.108)

Thus the transformation to redshift space is nonlinear mapping, which make it difficult to model
the nonlinear power spectrum in redshift space.

Intuitively, the redshift distortion effect is understood in two ways. Fig. 3.5 illustrates the
two redshift distortion effects, separately. At sufficiently large scales, a slightly overdense region
appears squashed toward the center of overdense region. On the other hand, in more collapsed
object seen at small scales, the so-called Fingers-of-God (FOG) effect is attributed to random

Large scale: Squashing effect
   - amplitude become larger 

Small scale: Finger-of-God 
   - amplitude becomes smaller

Kaiser, 1987

BAO scale at low redshift is mildly nonlinear regime → both effects are needed!

In linear theory PS(k, µ) = b2

�
1 +

f

b
µ2

�2

Pm(k)P (k) = ��g(k)2� �

ẑ
µ = cos �

�k

: l.o.s.
RSD measurement

＊ all information is encoded up to hexadecapole (l=4)

f � d lnD(a)
d ln a

� �m(z)� γ = 0.55 [GR], 0.68 [DGP]
depends on scale [f(R)] Linder, 2008

Redshift-space distortion (RSD) in general
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real-space distance

peculiar velocity of galaxy redshift-space distance

A distance to a galaxy is measured by “redshift” which cannot be distinguished 
from its peculiar velocity along the l.o.s.

Makes l.o.s. special so that the clustering pattern is distorted anisotropically.

- Velocity field information only along l.o.s

�s = �r +
�v · ẑ

aH(z)
ẑredshift space

real space
line of sight direction

∂u(x, τ)

∂τ
+ H(τ) u(x, τ) = −∇Φ(x, τ), (19)

where θ(x, τ) ≡ ∇ · u(x, τ) is the divergence of the velocity field. These
equations are now straightforward to solve. The velocity field, as any vector
field, can be completely described by its divergence θ(x, τ) and its vorticity
w(x, τ) ≡ ∇× u(x, τ) , whose equations of motion follow from Eq. (19)

∂θ(x, τ)

∂τ
+ H(τ) θ(x, τ) +

3

2
Ωm(τ)H2(τ)δ(x, τ) = 0, (20)

∂w(x, τ)

∂τ
+ H(τ) w(x, τ) = 0. (21)

The vorticity evolution readily follows from Eq. (21), w(τ) ∝ a−1, i.e. in the
linear regime any initial vorticity decays away due to the expansion of the
Universe. The density contrast evolution follows by taking the time derivative
of Eq. (20) and replacing in Eq. (18),

d2D1(τ)

dτ 2
+ H(τ)

dD1(τ)

dτ
=

3

2
Ωm(τ)H2(τ)D1(τ), (22)

where we wrote δ(x, τ) = D1(τ)δ(x, 0), with D1(τ) the linear growth factor.
This equation, together with the Friedmann equations, Eqs. (4-5), determines
the growth of density perturbations in the linear regime as a function of cos-
mology. Since it is a second-order differential equation, it has two independent
solutions, let’s denote the fastest growing mode D(+)

1 (τ) and the slowest one

D(−)
1 (τ). The evolution of the density is then

δ(x, τ) = D(+)
1 (τ)A(x) + D(−)

1 (τ)B(x), (23)

where A(x) and B(x) are two arbitrary functions of position describing the ini-
tial density field configuration, whereas the velocity divergence [using Eq. (18)]
is given by

θ(x, τ) = −H(τ) [f(Ωm, ΩΛ)A(x) + g(Ωm, ΩΛ)B(x)] , (24)

f(Ωm, ΩΛ) ≡ d lnD(+)
1

d ln a
=

1

H
d ln D(+)

1

dτ
g(Ωm, ΩΛ) =

1

H
d ln D(−)

1

dτ
. (25)

The most important cases are

(1) When Ωm = 1, ΩΛ = 0, we have the simple solution

D(+)
1 = a, D(−)

1 = a−3/2, f(1, 0) = 1, (26)

thus density fluctuations grow as the scale factor.

17

linear Euler equation

gravity test

degeneracy w/ AP test

Another anisotropic distortion!

Kaiser (1987)

Jackson (1972)

A distance to a galaxy is measured by “redshift” which cannot be 
distinguished from its peculiar velocity

Large scale: Squashing effect 
- amplitude become larger

Small scale: Finger-of-God 
- amplitude become smaller
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RSD in linear theory

5

In linear theory,  the anisotropic P(k) in redshift space is

The definition of  ‘f=dlnD/dlna’ comes from the velocity field

Legendre multipole expansion is useful to characterize P(k,μ)

Notice that, in linear theory, we only have  
monopole (l=0), quadrupole (l=2), hexadecapole (l=4)

Kaiser (1987)

Redshift-space distortion (RSD) in general

7
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real-space distance

peculiar velocity of galaxy redshift-space distance

A distance to a galaxy is measured by “redshift” which cannot be distinguished 
from its peculiar velocity along the l.o.s.

Makes l.o.s. special so that the clustering pattern is distorted anisotropically.

- Velocity field information only along l.o.s

�s = �r +
�v · ẑ

aH(z)
ẑredshift space

real space
line of sight direction

∂u(x, τ)

∂τ
+ H(τ) u(x, τ) = −∇Φ(x, τ), (19)

where θ(x, τ) ≡ ∇ · u(x, τ) is the divergence of the velocity field. These
equations are now straightforward to solve. The velocity field, as any vector
field, can be completely described by its divergence θ(x, τ) and its vorticity
w(x, τ) ≡ ∇× u(x, τ) , whose equations of motion follow from Eq. (19)

∂θ(x, τ)

∂τ
+ H(τ) θ(x, τ) +

3

2
Ωm(τ)H2(τ)δ(x, τ) = 0, (20)

∂w(x, τ)

∂τ
+ H(τ) w(x, τ) = 0. (21)

The vorticity evolution readily follows from Eq. (21), w(τ) ∝ a−1, i.e. in the
linear regime any initial vorticity decays away due to the expansion of the
Universe. The density contrast evolution follows by taking the time derivative
of Eq. (20) and replacing in Eq. (18),

d2D1(τ)

dτ 2
+ H(τ)

dD1(τ)

dτ
=

3

2
Ωm(τ)H2(τ)D1(τ), (22)

where we wrote δ(x, τ) = D1(τ)δ(x, 0), with D1(τ) the linear growth factor.
This equation, together with the Friedmann equations, Eqs. (4-5), determines
the growth of density perturbations in the linear regime as a function of cos-
mology. Since it is a second-order differential equation, it has two independent
solutions, let’s denote the fastest growing mode D(+)

1 (τ) and the slowest one

D(−)
1 (τ). The evolution of the density is then

δ(x, τ) = D(+)
1 (τ)A(x) + D(−)

1 (τ)B(x), (23)

where A(x) and B(x) are two arbitrary functions of position describing the ini-
tial density field configuration, whereas the velocity divergence [using Eq. (18)]
is given by

θ(x, τ) = −H(τ) [f(Ωm, ΩΛ)A(x) + g(Ωm, ΩΛ)B(x)] , (24)

f(Ωm, ΩΛ) ≡ d lnD(+)
1

d ln a
=

1

H
d ln D(+)

1

dτ
g(Ωm, ΩΛ) =

1

H
d ln D(−)

1

dτ
. (25)

The most important cases are

(1) When Ωm = 1, ΩΛ = 0, we have the simple solution

D(+)
1 = a, D(−)

1 = a−3/2, f(1, 0) = 1, (26)

thus density fluctuations grow as the scale factor.

17

linear Euler equation

gravity test

degeneracy w/ AP test

Note that RSDs are complementary to weak lensing (Φ+Ψ)

(GR) (DGP)

Jain & Khoury (2010)
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Galaxy Redshift Surveys
Many gigantic galaxy redshift surveys for BAO and RSD

Completed: CfA2, 2dF, SDSS-II, WiggleZ 
!
Ongoing: BOSS, VIPERS, FastSound 
!
Future: HETDEX, SuMiRe PFS, DESI, Euclid CfA2 redshift survey (Geller & Huchra 1989)

Formally, this could “measure” BAO with a ~0.05σ detection

BAO scale

Early surveys too small

CfA2

BAO scale

Complementary to imaging (photo-z) surveys 
!

surveys: DES, HSC, LSST etc... 
!

designed for weak lensing 
!

angular clustering is possible,  
but little information on RSD

SDSS
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Baryon Oscillation Spectroscopic Survey
A part of Sloan Digital Sky Survey III (2009-2014)

- 2.5m telescope in Apache Point Observatory in NM, USA

- BOSS (DR9-DR12) 
  1) 1.5 million luminous galaxies 
  2) 150,000 quasars (Ly-α forest)

Eisenstein et al. 2011

- image (u,g,r,i,z) bands with r~22.5 covering ~14,000deg2 Fukugida et al. 1996

3D galaxy map in DR9 SDSS-II DR7 
Main Galaxy 
Luminous Red Galaxy

SDSS-III BOSS DR9 
LOWZ 
CMASS

z~0.1
z~0.35

z~0.32
z~0.57

Larger Vsurvey & Higher ngal

Better Statistics!

e.g. Slosar et al. 2012
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Huge improvement of ‘CMASS’ from DR9 to DR114 L. Anderson et al.

Figure 1. Evolution of the BOSS sky coverage from DR9 to DR11. Top panels show our observations in the North Galactic Cap while lower panels show
observations in the South Galactic Cap. Colors indicate the spectroscopic completeness within each sector as indicated in the key in the lower right panel.
Gray areas indicate our expected footprint upon completion of the survey. The total sky coverage in DR9, DR10, and DR11 is 3,275 deg2, 6,161 deg2, and
8,377 deg2, respectively.

imaging data via163

r
cmod

< 13.5 + ck/0.3 (1)
|c?| < 0.2 (2)

16 < r
cmod

< 19.6 (3)
r
psf

� r
mod

> 0.3 (4)

where here i and r indicate magnitudes and all magnitudes are cor-
rected for Galactic extinction (via the Schlegel, Finkbeiner & Davis
1998 dust maps), i

fib2

is the i-band magnitude within a 200 aperture,
the subscript mod denotes ‘model’ magnitudes (Stoughton et al.
2002), the subscript cmod denotes ‘cmodel’ magnitudes (Abaza-
jian et al. 2004), and

ck = 0.7 (g
mod

� r
mod

) + 1.2 (r
mod

� i
mod

� 0.18) (5)

and

c? = r
mod

� i
mod

� (g
mod

� r
mod

)/4.0� 0.18. (6)

The resulting LOWZ galaxy sample has three times the spatial den-164

sity of the SDSS-II LRGs, as is shown in Fig. 2, with a similar clus-165

tering amplitude to the CMASS sample (Parejko et al. 2013). The166

effective redshift is z = 0.32, slightly lower than that of the SDSS-167

II LRGs as we place a redshift cut z < 0.43 to ensure no overlap168

with the CMASS sample, and hence independent measurements.169

Further details can be found in Parejko et al. (2013) and Tojeiro et170

al. (2014).171

The CMASS sample is designed to be approximately stellar172

mass limited above z = 0.45. These galaxies are selected from the173

SDSS DR8 (Aihara et al. 2011) imaging via174

17.5 < i
cmod

< 19.9 (7)
r
mod

� i
mod

< 2 (8)
d? > 0.55 (9)

i
fib2

< 21.5 (10)
i
cmod

< 19.86 + 1.6(d? � 0.8) (11)

where

d? = r
mod

� i
mod

� (g
mod

� r
mod

)/8.0. (12)

For CMASS targets, stars are further separated from galaxies by175

only keeping objects with176

i
psf

� i
mod

> 0.2 + 0.2(20.0� i
mod

) (13)
z
psf

� z
mod

> 9.125� 0.46 z
mod

, (14)

unless the target also passes the LOWZ cuts listed above.177

The CMASS selection yields a sample with a median redshift178

z = 0.57 and a stellar mass that peaks at log
10

(M/M�) = 11.3179

(Maraston et al. 2012). Most CMASS targets are central galaxies180

residing in dark matter halos of 1013 h�1M�, but a non-negligible181

fraction are satellites that live primarily in halos about 10 times182

more massive (White et al. 2011; Nuza et al. 2013). See Tojeiro et183

al. (2012) for a detailed description of the CMASS population of184

galaxies.185

Target lists are produced using these algorithms and are then186

“tiled” to produce lists of galaxies to be observed with a single187

pointing of the Sloan telescope. Not all targets can be assigned188

fibers, and not all that are result in a good redshift measurement.189

In fact, there are three reasons why a targeted galaxy may not ob-190

tain a BOSS spectrum:191

(i) SDSS-II already obtained a good redshift for the object; these192

are denoted known.193

(ii) A target of different type is within 6200; these are denoted194

missed.195

(iii) another target of the same type is within 6200; these are de-196

noted cp for “close pair”.197

The second and third conditions correspond to hardware constraints198

on the closest that two fibers can be placed. There are two reasons199

why a spectrum might not result in a good redshift measurement:200

(i) The spectrum reveals that the object is a star; denoted star.201

(ii) The pipeline fails to obtain a good redshift determination202

from the spectrum. These are denoted fail.203

c� 2011 RAS, MNRAS 000, 2–37

Area [deg2]

# of galaxies

when July, 2012 Dec, 2014

690,827264,283

8,4983,275

Veff [(Gpc/h)3] 0.75 2.31

DR9 DR11

North

South



!39

Nonlinear Issues in modeling P(k)
Accurate prediction of the nonlinear galaxy P(k) is necessary:

e.g., Taruya, Bernardeau, Nishimichi (2012)

gravitational evolution

redshift space distortions: 

Taruya, Nishimichi, S.S. (2010), Nishimichi & Taruya (2012), Taruya et al. (2013) 
Matsubara (2008a, 2008b, 2011, 2013) 
Seljak & McDonald (2012), Okumura et al. (2012a, 2012b), Vlah et al. (2012,2013) 
Reid & White (2010), Carlson et al. (2012), Wang et al. (2013)

galaxy bias
e.g. Nishimichi & Taruya (2011), Oka, S.S. et al. (2013)

CDM

ν

λFSCDM

CDM

CDM

CDM

CDM

CDM

CDM

CDM

CDM

CDM

b

b

b

b

b

ν

b

図 3. ニュートリノのフリーストリーミングの概念図．
大規模構造を形成する物質の要素，冷たいダー
クマター (CDM)，バリオン (b)に比べて，軽い
ニュートリノ (ν) は速度分散が大きいためにフ
リーストリーミングスケール (λFS) より小さい
スケールにはとどまることができない．従って，
λFS 以下のスケールの構造の成長は，ニュートリ
ノが重力として寄与しない分，ニュートリノ質量
が 0 の場合に比べて抑制される．

ラスタリング分布に焦点を絞り，筆者のグループ
が行ってきた，銀河クラスタリング分布の非線形
進化に対する有質量ニュートリノの影響，さらに
はそれから得られるニュートリノ質量の制限にお
ける研究について議論しよう．

4. 銀河のクラスタリング分布を用いた
ニュートリノ質量の制限

4.1 銀河サーベイの利点と理論的課題
まず銀河のクラスタリング分布を測定するよ

うな大規模な銀河の分光サーベイについて述べ
ておこう．近年，アメリカを中心とした Sloan
Digital Sky Survey (SDSS)，オーストラリアの
WiggleZ，日本のすばる望遠鏡を用いた将来計画
Subaru Measurements of Imaging and Redshift

波数大スケール 小スケール

パ
ワ
ー
ス
ペ
ク
ト
ル
 (ゆ
ら
ぎ
の
大
き
さ
) SDSS赤色銀河のパワースペクトル

物質ゆらぎの線形パワースペクトルニュートリノ質量 0
ニュートリノ質量 1.0eV

？

図 4. 線形理論により予言される物質ゆらぎのパワース
ペクトル (破線) と，SDSS 赤色銀河で測定され
た銀河のパワースペクトル (データ点)．参考のた
め，ニュートリノ質量が 0 の場合 (黒の破線) と
ニュートリノが質量をもつ場合 (0.1eV，青の破
線) の両方を示した．

(SUMIRe)の分光計画であるPrime Focus Spec-
trograph (PFS)，さらには将来の衛星計画である
WFIRST等，盛んに銀河分光サーベイが提案さ
れているが，その主な目的はバリオン振動の高精
度測定によってダークエネルギーの性質に迫るこ
とである．バリオン振動スケールとは，CMBで
測定されている初期宇宙の光子・バリオン流体の
音速ホライズンスケールであり，これを宇宙膨張
を測定するためのロバストな標準ものさしとして
用いることで宇宙膨張の様子を知ろうというので
ある．銀河のクラスタリング分布に現れるバリオ
ン振動スケールは約 150Mpcという非常に大きな
スケールなので，測定には非常に大規模なサーベ
イが必要になるが，非常に興味深いのは，ニュー
トリノのフリーストリーミングスケールが偶然に

*5 厳密には各世代の質量固有値のニュートリノ質量それぞれに対してニュートリノのフリーストリーミングスケールは異
なるので，各世代のニュートリノ質量を決定することが原理的には可能である．しかし，現実的にはニュートリノ振動
実験の結果を信じれば，各世代間の質量差は非常に小さく，それによる各ニュートリノのフリーストリーミングスケー
ルにおける違いも非常に小さい．

第???巻 第?号 5
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DR9 analysis to use ‘shape’
G. Zhao, SS et al. (2013)

Use just monopole. Model is based on Perturbation Theory.

8 Zhao, Saito, Percival et al.
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Figure 3. The purple and green contours on the top layer in left panels: the 68 and 95 percent CL contour plots for neutrino mass and ΩM obtained from the
joint dataset including CMB+SN+CMASS power spectra cut off at various k illustrated in the figure; The blue contours on the bottom layer in left panels:
the 68 and 95 percent CL contour plots for neutrino mass and ΩM obtained from the joint dataset including CMB+SN+CMASS BAO; Right panel: the
corresponding 1D posterior distribution of neutrino mass. A ΛCDM model is assumed for the background cosmology.

Figure 4. The CMASS data used in the analysis and the best fit power
spectrum assuming a ΛmνCDM cosmology. The data and spectra are both
rescaled using the linear matter spectrum for the best fit model. The upper
and lower panels show the cases of kmax = 0.1 and 0.2hMpc−1 respec-
tively.

kmax = 0.1, 0.2 hMpc−1 when all data are combined (purple and
green contours). As shown, the change is marginal, with the up-
per limit for Σmν only lowered to 0.338 eV from 0.340 eV when
kmax is increased from 0.1 to 0.2 hMpc−1. This is understand-
able given our default galaxy bias model: when kmax is larger, the
non-linear P (k) data simply constrains the nuisance parameters
b2 in Eq. (9) rather than Σmν . We should expect that, for larger
kmax, the model Eq. (9) becomes less reliable since it is based on
perturbation theory. Given that our lack of knowledge of the non-
linear bias of the CMASS galaxies means there is little information
0.1 < k < 0.2hMpc−1, it is not worth the added risk of as-
suming our model is appropriate on these scales, and we choose

kmax = 0.1 hMpc−1 as our default. All of the results presented
are based on this conservative limit.

Fig. 4 shows the goodness-of-fit by over-plotting the best-fit
model on top of the observational data for the cases of kmax =
0.1, 0.2 hMpc−1. The quantity shown is the ratio between the
galaxy power spectrum and the linear matter power spectrum,
Pg(k)/P

L
cbν (see Eqns. (7) and (9)). From Eq. (10), we can see that

on large scales, this ratio is roughly the linear galaxy bias squared
b21. Our MCMC analysis suggests b1 ≃ 2, which is consistent with
the result in Reid et al. (2012).

5.1.2 The choice of the galaxy modelling

Next we shall test the effect of the choice of the galaxy modelling.
To test the limiting scales to be fitted in the last section, we used
Eq. (9) to model the galaxy power spectrum. In Fig. 5, we show
the contours for Σmν and ΩM for the HALOFIT-ν (Eq. 18) and
the Cole et al. (2005) (Eq. 19) models. The difference between con-
straints calculated assuming these three models is marginal, which
is reasonable as they only differ in form for kmax > 0.1 hMpc−1.

5.1.3 The choice of SN data

The left panel of Fig. 6 shows 95 percent CL contour plots forΣmν

and ΩM, comparing various data combinations. Comparison with
the left panel shows the effect of including the Union2.1 rather
than SNLS3 SN data. SNLS3 data provides tighter constraint on
ΩM, although the measurements of the neutrino mass are similar,
namely,

Σmν < 0.340 eV (WMAP7 + SNLS3 + CMASS),

Σmν < 0.334 eV (WMAP7 + Union2.1 + CMASS).(24)

In both cases, we see that CMASS data help to reduce the allowed
parameter space dramatically.

5.1.4 The effect of the redshift space distortion modelling

We now test how could the neutrino mass measurements are af-
fected by the choice of the RSD model. In Figs 7, 8 and Table
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Figure 3. The purple and green contours on the top layer in left panels: the 68 and 95 percent CL contour plots for neutrino mass and ΩM obtained from the
joint dataset including CMB+SN+CMASS power spectra cut off at various k illustrated in the figure; The blue contours on the bottom layer in left panels:
the 68 and 95 percent CL contour plots for neutrino mass and ΩM obtained from the joint dataset including CMB+SN+CMASS BAO; Right panel: the
corresponding 1D posterior distribution of neutrino mass. A ΛCDM model is assumed for the background cosmology.

Figure 4. The CMASS data used in the analysis and the best fit power
spectrum assuming a ΛmνCDM cosmology. The data and spectra are both
rescaled using the linear matter spectrum for the best fit model. The upper
and lower panels show the cases of kmax = 0.1 and 0.2hMpc−1 respec-
tively.

kmax = 0.1, 0.2 hMpc−1 when all data are combined (purple and
green contours). As shown, the change is marginal, with the up-
per limit for Σmν only lowered to 0.338 eV from 0.340 eV when
kmax is increased from 0.1 to 0.2 hMpc−1. This is understand-
able given our default galaxy bias model: when kmax is larger, the
non-linear P (k) data simply constrains the nuisance parameters
b2 in Eq. (9) rather than Σmν . We should expect that, for larger
kmax, the model Eq. (9) becomes less reliable since it is based on
perturbation theory. Given that our lack of knowledge of the non-
linear bias of the CMASS galaxies means there is little information
0.1 < k < 0.2hMpc−1, it is not worth the added risk of as-
suming our model is appropriate on these scales, and we choose

kmax = 0.1 hMpc−1 as our default. All of the results presented
are based on this conservative limit.

Fig. 4 shows the goodness-of-fit by over-plotting the best-fit
model on top of the observational data for the cases of kmax =
0.1, 0.2 hMpc−1. The quantity shown is the ratio between the
galaxy power spectrum and the linear matter power spectrum,
Pg(k)/P

L
cbν (see Eqns. (7) and (9)). From Eq. (10), we can see that

on large scales, this ratio is roughly the linear galaxy bias squared
b21. Our MCMC analysis suggests b1 ≃ 2, which is consistent with
the result in Reid et al. (2012).

5.1.2 The choice of the galaxy modelling

Next we shall test the effect of the choice of the galaxy modelling.
To test the limiting scales to be fitted in the last section, we used
Eq. (9) to model the galaxy power spectrum. In Fig. 5, we show
the contours for Σmν and ΩM for the HALOFIT-ν (Eq. 18) and
the Cole et al. (2005) (Eq. 19) models. The difference between con-
straints calculated assuming these three models is marginal, which
is reasonable as they only differ in form for kmax > 0.1 hMpc−1.

5.1.3 The choice of SN data

The left panel of Fig. 6 shows 95 percent CL contour plots forΣmν

and ΩM, comparing various data combinations. Comparison with
the left panel shows the effect of including the Union2.1 rather
than SNLS3 SN data. SNLS3 data provides tighter constraint on
ΩM, although the measurements of the neutrino mass are similar,
namely,

Σmν < 0.340 eV (WMAP7 + SNLS3 + CMASS),

Σmν < 0.334 eV (WMAP7 + Union2.1 + CMASS).(24)

In both cases, we see that CMASS data help to reduce the allowed
parameter space dramatically.

5.1.4 The effect of the redshift space distortion modelling

We now test how could the neutrino mass measurements are af-
fected by the choice of the RSD model. In Figs 7, 8 and Table
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Want to do for DR11 but…
SS et al., in prep

BAO paper has not investigated LCDM + Σmν

We could do but I personally don’t want to redo the same thing… 
!
	 - a lot of rooms to improve our modeling  
!
	 - now can be compared in detail against simulations with neutrinos 
!
	 - need to check if our model can return the input value of Σmν

Stay tuned!
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Figure 10. Top panel: The measured monopole of the CMASS galaxy correlation function, multiplied by the square of the scale, s, for each of the BOSS
data releases. These figures are shown pre-reconstruction. For clarity, the DR10 data have been shifted horizontally by +1h�1 Mpc and the DR9 data by
�1h�1 Mpc. Bottom panel: The measured spherically averaged CMASS galaxy power spectrum, multiplied by the frequency scale, k, for each of the BOSS
data releases. For clarity, the DR9 data have been shifted by +0.002hMpc�1 and the DR10 data by �0.002hMpc�1. All of the error-bars shown in both
panels represent the diagonal elements of the covariance matrix determined from the mocks. One can observe broadly consistent clustering, especially in the
overall shape of each curve.

We now apply our results to the BOSS data. We present our807

isotropic measurements in this section and our anisotropic results808

in the following section.809

The configuration space and Fourier space clustering measure-810

ments made from the DR10 and DR11 CMASS samples are pre-811

sented in Fig. 10 for ⇠(s) and P (k), using our fiducial binning812

choice. These points are compared against the DR9 clustering re-813

sults2 presented in Anderson et al. (2012). For both P (k) and ⇠(s),814

there are variations in the power observed in the different data sets,815

but the shapes of each are clearly consistent, suggesting that we816

should expect to recover consistent results for the BAO scale. At817

2 We recalculate the DR9 P (k) using the new method presented in Sec-
tion 4.1 for consistency.

the largest scales (lowest k values), we expect the power to in-818

crease with each data release as the area increases and the size of819

the integral constraint decreases. This fact, and the general nature820

of Fourier transforms, means that the relative amplitudes observed821

at large scales are not directly comparable between P (k) and ⇠(s);822

instead they are both expected to be consistent with the same under-823

lying P true. Measurements of the clustering in the LOWZ sample824

are presented in Tojeiro et al. (2014).825

Fig. 11 displays the best-fit BAO model (solid curves) com-826

pared to the data for ⇠(s) (left panels) and P (k) (right panels)827

for DR11 only. The pre-reconstruction measurements are displayed828

in the top panels, and the post-reconstruction ones in the bottom829

panels. The measurements are presented for our fiducial binning830

width and centring, and show a clear BAO feature in both P (k)831

and ⇠(s), with the best-fit models providing a good fit. The ef-832
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Figure 11. DR11 CMASS clustering measurements (black circles) with ⇠(s) shown in the left panels and P (k) in the right panels. The top panels show the
measurements prior to reconstruction and the bottom panels show the measurements after reconstruction. The solid lines show the best-fit BAO model in each
case. One can see that reconstruction has sharpened the acoustic feature considerably for both ⇠(s) and P (k).

fect of reconstruction is clear for both the correlation function833

and power spectrum, with the BAO signature becoming more pro-834

nounced relative to the smooth shape of the measurements. In-835

deed, all of the BAO measurements, listed in Table 7, have im-836

proved post-reconstruction, in contrast to our DR9 results (Ander-837

son et al. 2012). This behaviour is expected given the results of838

Section 4.2, which showed that, given the precision afforded by the839

DR11 volume coverage, reconstruction improved the results from840

all of our mock catalogues. Reconstruction is particularly striking841

in the power spectrum plot, showing a clear third peak in the post-842

reconstruction P (k).843

6.2 DR11 Acoustic Scale Measurements844

Our BAO measurements are listed in Table 7. The mocks for DR10845

and DR11 show significant improvement with reconstruction in846

most realisations, and we therefore adopt the reconstruction results847

as our default measurements. Our consensus value for the CMASS848

BAO measurement, ↵ = 1.0144 ± 0.0089, is determined from a849

combination of P (k) and ⇠(s) measurements, and in what follows850

we describe the process of obtaining this value, and tests that vali-851

date it.852

Post-reconstruction, the significance of the BAO detection in853

both the correlation function and the power spectrum are greater854

than 7� for the reconstructed DR11 CMASS BAO measurements.855

The significance of detection is shown in Fig. 12, where we also see856

a difference in the detection significance between results from ⇠(s)857

and P (k). This variation is caused by the differential ability of the858

models for the broad-band component to match the offset between859

the data and the no-baryon model. The broad-band model for the860

power spectrum has more free parameters than that for the corre-861

lation function, so it is perhaps not surprising that the no-baryon862

model is a slightly better fit.863

Table 7 also lists �2/dof for the best-fit models, showing that864

they are close to unity for DR10 and DR11 fits using both the865

correlation function and power spectrum. The most unusual is the866

�2/dof = 18/27 for the post-reconstruction DR11 P (k) measure-867

ment. Such a low �2 is expected in 10 per cent of cases, thus we868

conclude that our best-fit models provide adequate descriptions of869

the data.870

The precision of the BAO measurements are typical of those871

achieved in the mock samples. This consistency in shown in the top872

panels of Fig. 4, where the orange stars show the uncertainty in the873

data post-reconstruction versus the uncertainty pre-reconstruction.874

All of the CMASS data points lie within well the distribution of875

the mock points. The most discrepant result is for the DR10 P (k)876

measurement post reconstruction; it has an uncertainty of 0.014,877

while the mean uncertainty from the mock realisations is 0.011,878

but one can see that many mock realisations recover an uncertainty879

larger than 0.014.880

We combine the DR11 CMASS ⇠(s) BAO measurements us-881

ing eight bin centres and the P (k) results using ten bin centres882
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Figure 12. Plot of �2 vs. ↵, for reconstructed data from DR10 (blue), and DR11 (black) data, for P (k) (left) and ⇠(s) (right). The dashed lines display the
�2 for the model with no BAO. The no BAO “De-Wiggled” template (see Section 4.1) used for ⇠(s) depends on ↵ and thus so does the �2 of the no BAO
model. The DR11 detection significance is greater than 7� for P (k) and 8� for ⇠(s).

Table 7. Isotropic BAO scale measurements recovered from BOSS data.
The “combined” results are the optimally combined post-reconstruction ↵

measurements across multiple bin centre choices, based on the correlation
matrix obtained from the mock samples. The P (k)+⇠(s) measurements
are the mean of these combined results, with an uncertainty calculated as
described in the text. The quoted errors are statistical only, except for the
‘Consensus” measurements, where a systematic uncertainty has been in-
cluded. This estimated systematic error is discussed in Section 8.1.

Estimator ↵ �2/dof

DR11 CMASS
Consensus z = 0.57 1.0144± 0.0098 (stat+sys)
P (k)+⇠(s) 1.0144± 0.0089 (stat)
combined P (k) 1.0110± 0.0093
combined ⇠(s) 1.0178± 0.0089

post-recon P (k) 1.0114± 0.0093 18/27
post-recon ⇠

0

(s) 1.0209± 0.0091 16/17
pre-recon P (k) 1.025± 0.015 33/27
pre-recon ⇠

0

(s) 1.031± 0.013 14/17

DR10 CMASS
Consensus 1.014± 0.014 (stat+sys)
post-recon P (k) 1.007± 0.013 23/28
post-recon ⇠

0

(s) 1.022± 0.013 14/17
pre-recon P (k) 1.023± 0.019 35/28
pre-recon ⇠

0

(s) 1.022± 0.017 16/17

DR9 CMASS
Consensus 1.033± 0.017

DR11 LOWZ
Consensus z = 0.32 1.018± 0.021 (stat+sys)
P (k)+⇠(s) 1.018± 0.020 (stat)

DR10 LOWZ
Consensus 1.027± 0.029 (stat+sys)

Table 8. BAO scale measurements for DR11 reconstructed data using dif-
ferent bin centres. These results are combined using their correlation matrix
to obtain optimised BAO measurements.

Shift ↵ �2/dof

P (k)

�ki = 0 1.0115± 0.0093 18/27
�ki = 0.0008hMpc�1 1.0113± 0.0094 19/27
�ki = 0.0016hMpc�1 1.0101± 0.0096 21/27
�ki = 0.0024hMpc�1 1.0097± 0.0097 21/27
�ki = 0.0032hMpc�1 1.0103± 0.0095 20/27
�ki = 0.004hMpc�1 1.0111± 0.0094 19/27
�ki = 0.0048hMpc�1 1.0115± 0.0094 18/27
�ki = 0.0056hMpc�1 1.0119± 0.0093 16/27
�ki = 0.0064hMpc�1 1.0125± 0.0092 16/27
�ki = 0.0072hMpc�1 1.0122± 0.0092 17/27

⇠(s)

�si = �2h�1 Mpc 1.0188± 0.0104 12/17
�si = �1h�1 Mpc 1.0154± 0.0094 8/17
�si = 0 1.0209± 0.0091 16/17
�si = +1h�1 Mpc 1.0186± 0.0086 14/17
�si = +2h�1 Mpc 1.0201± 0.0087 16/17
�si = +3h�1 Mpc 1.0164± 0.0087 19/17
�si = +4h�1 Mpc 1.0153± 0.0092 17/17
�si = +5h�1 Mpc 1.0191± 0.0100 13/17

in the same manner as applied to the mocks, as described in Sec-883

tion 4.3. The individual fits determined for different bin centres are884

shown in Table 8. For ⇠(s), our fiducial choice recovered the largest885

↵ of any of the bin centres. Thus, when combining the results across886

all of the bin centre choices, ↵ decreases to 1.0178 ± 0.0089.887

The uncertainty has decreased by only 2 per cent (compared to the888

mean of 7 per cent found for the mocks) in part because the esti-889

mated uncertainty of the fiducial bin choice (0.0091) is less than the890

weighted mean uncertainty across all of the bin choices (0.0092).891

For P (k), the result changes little when we combine across the re-892
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Table 13. Comparison of CMB flat ⇤CDM predictions for the BAO distance scale to our BOSS DR11 measurements. We translate the CMB predictions to our
observables of ↵, ✏, ↵k, and ↵?. As the CMB data sets vary notably in the value of ⌦mh2, we report these quantities. We also translate our BOSS distance
measurements to the constraints they imply on ⌦mh2, assuming the flat ⇤CDM model and using the CMB measurements of ⌦bh

2 and the angular acoustic
scale. We stress that this inference of ⌦mh2 is entirely model-dependent and should not be used as a more general result of this paper. However, it does allow
an easy comparison of the CMB and BOSS data sets in the context of ⇤CDM.

dataset z
e↵

↵ ✏ ↵k ↵? ⌦mh2

Planck 0.32 1.040± 0.016 �0.0033± 0.0013 1.033± 0.014 1.043± 0.018 0.1427± 0.0024
WMAP 0.32 1.008± 0.029 �0.0007± 0.0021 1.007± 0.025 1.009± 0.031 0.1371± 0.0044

eWMAP 0.32 0.987± 0.023 0.0006± 0.0016 0.988± 0.020 0.986± 0.025 0.1353± 0.0035

LOWZ 0.32 1.018± 0.021 - - - 0.1387± 0.0036

Planck 0.57 1.031± 0.013 �0.0053± 0.0020 1.020± 0.009 1.037± 0.015 0.1427± 0.0024

WMAP 0.57 1.006± 0.023 �0.0012± 0.0034 1.004± 0.017 1.007± 0.027 0.1371± 0.0044
eWMAP 0.57 0.988± 0.019 0.0010± 0.0027 0.990± 0.013 0.987± 0.021 0.1353± 0.0035

CMASS-iso 0.57 1.0144± 0.0098 - - - 0.1389± 0.0022

CMASS 0.57 1.019± 0.010 �0.025± 0.014 0.968± 0.033 1.045± 0.015 0.1416± 0.0018

Figure 21. The distance-redshift relation from the BAO method on galaxy
surveys. This plot shows DV (z)(rs,fid/rd) versus z from the DR11
CMASS and LOWZ consensus values from this paper, along with those
from the acoustic peak detection from the 6dFGS (Beutler et al. 2011) and
WiggleZ survey (Blake et al. 2011). The grey region shows the 1� predic-
tion for DV (z) from the Planck 2013 results, assuming flat ⇤CDM and
using the Planck data without lensing combined with smaller-scale CMB
observations and WMAP polarization (Planck Collaboration 2013b). One
can see the superb agreement in these cosmological measurements.

9.2 Comparison of BAO and CMB Distance Scales in ⇤CDM1795

Results from the BAO method have improved substantially in the1796

last decade and we have now achieved measurements at a wide1797

range of redshifts. Following Anderson et al. (2012), in Fig. 21 we1798

plot the distance-redshift relation obtained from isotropic acous-1799

tic scale fits in the latest galaxy surveys. In addition to the val-1800

ues from this paper, we include the acoustic scale measurement1801

from the 6dFGS (Beutler et al. 2011) and WiggleZ survey (Blake1802

et al. 2011). As the BAO method actually measures DV /rd, we1803

plot this quantity multiplied by a constant rd from our fiducial cos-1804

mology. The very narrow grey band here is the prediction from the1805

Planck CMB dataset detailed in Sec. 9.1. As described in Ander-1806

son et al. (2012), in vanilla flat ⇤CDM, the CMB acoustic peaks1807

imply precise measurements of ⌦mh2 and ⌦bh
2, which in turn1808

imply the acoustic scale. The angular acoustic scale in the CMB1809

then determines the distance to z = 1089, which breaks the degen-1810

eracy between ⌦m and h once the low-redshift expansion history1811

Figure 22. The DV (z)/rd measured from galaxy surveys, divided by
the best-fit flat ⇤CDM prediction from the Planck data. All error bars
are 1�. The Planck prediction is a horizontal line at unity, by construc-
tion. The dashed line shows the best-fit flat ⇤CDM prediction from the
WMAP+SPT/ACT results, including their smaller-scale CMB compilation
(Bennett et al. 2013). In both cases, the grey region shows the 1 � vari-
ation in the predictions, which are dominated by uncertainties in ⌦mh2.
As the value of ⌦mh2 varies, the prediction will move coherently up or
down, with amplitude indicated by the grey region. One can see the mild
tension between the two sets of CMB results, as discussed in Planck Col-
laboration (2013b). The current galaxy BAO data fall in between the two
predictions and are clearly consistent with both. As we describe in Sec. 7.5,
the anisotropic CMASS fit would yield a prediction for this plot that is
0.5% higher than the isotropic CMASS fit; this value would fall somewhat
closer to the Planck prediction. In addition to the BOSS data points, we
plot SDSS-II results as open symbols, that from Percival et al. (2010) at
z = 0.275 and from Padmanabhan et al. (2012) at z = 0.35. These data
sets have a high level of overlap with BOSS LOWZ and with each other,
so one should not include more than one in statistical fitting. However, the
results are highly consistent despite variations in the exact data sets and
differences in methodology.

is otherwise specified (e.g., given ⌦K , w, and wa). The compari-1812

son between low-redshift BAO measurements and the predictions1813

from the CMB assuming a flat ⇤CDM cosmology therefore allows1814

percent-level checks on the expansion history in this model over a1815

large lever arm in redshift. One sees remarkably good agreement1816
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from excess residuals at the µK2 level in the high-` spectra rela-
tive to the best-fit AL = 1 ⇤CDM+foregrounds model on scales
where extragalactic foreground modelling is critical.

5.2. Baryon acoustic oscillations

Baryon acoustic oscillations (BAO) in the matter power spec-
trum were first detected in analyses of the 2dF Galaxy
Redshift Survey (Cole et al. 2005) and the SDSS redshift sur-
vey (Eisenstein et al. 2005). Since then, accurate BAO measure-
ments have been made using a number of di↵erent galaxy red-
shift surveys, providing constraints on the distance luminosity
relation spanning the redshift range 0.1 <⇠ z <⇠ 0.718. Here we use
the results from four redshift surveys: the SDSS DR7 BAO mea-
surements at e↵ective redshifts ze↵ = 0.2 and ze↵ = 0.35, anal-
ysed by Percival et al. (2010); the z = 0.35 SDSS DR7 measure-
ment at ze↵ = 0.35 reanalyzed by Padmanabhan et al. (2012); the
WiggleZ measurements at ze↵ = 0.44, 0.60 and 0.73 analysed by
Blake et al. (2011); the BOSS DR9 measurement at ze↵ = 0.57
analyzed by Anderson et al. (2013); and the 6dF Galaxy Survey
measurement at z = 0.1 discussed by Beutler et al. (2011).

BAO surveys measure the distance ratio

dz =
rs(zdrag)
DV(z)

, (45)

where rs(zdrag) is the comoving sound horizon at the baryon drag
epoch (when baryons became dynamically decoupled from the
photons) and DV(z) is a combination of the angular-diameter dis-
tance, DA(z), and the Hubble parameter, H(z), appropriate for the
analysis of spherically-averaged two-point statistics:

DV(z) =
"
(1 + z)2D2

A(z)
cz

H(z)

#1/3
. (46)

In the ⇤CDM cosmology, the angular diameter distance to red-
shift z is

DA(z) =
c

H0
D̂A.

=
c

H0

1
|⌦K |1/2(1 + z)

sinK
h
|⌦K |1/2x(z,⌦m,⌦⇤)

i
, (47)

where

x(z,⌦m,⌦⇤) =
Z z

0

dz0

[⌦m(1 + z0)3 +⌦K(1 + z0)2 +⌦⇤]1/2 , (48)

and sinK = sinh for ⌦K > 0 and sinK = sin for ⌦K < 0. Note
that the luminosity distance, DL, relevant for the analysis of Type
Ia supernovae (see Sect. 5.4) is related to the angular diameter
distance via DL = (c/H0)D̂L = DA(1 + z)2.

Di↵erent groups fit and characterize BAO features in di↵er-
ent ways. For example, the WiggleZ team encode some shape
information on the power spectrum to measure the acoustic pa-
rameter A(z), introduced by Eisenstein et al. (2005),

A(z) =
DV(z)

q
⌦mH2

0

cz
, (49)

18Detections of a BAO feature have recently been reported in the
three-dimensional correlation function of the Ly↵ forest in large sam-
ples of quasars at a mean redshift of z ⇡ 2.3 (Busca et al. 2012;
Slosar et al. 2013). These remarkable results, probing cosmology well
into the matter-dominated regime, are based on new techniques that are
less mature than galaxy BAO measurements. For this reason, we do not
include Ly↵ BAO measurements as supplementary data to Planck. For
the models considered here and in Sect. 6, the galaxy BAO results give
significantly tighter constraints than the Ly↵ results.

Fig. 15. Acoustic-scale distance ratio rs/DV(z) divided by the
distance ratio of the Planck base ⇤CDM model. The points are
colour-coded as follows: green star (6dF); purple squares (SDSS
DR7 as analyzed by Percival et al. 2010); black star (SDSS DR7
as analyzed by Padmanabhan et al. 2012); blue cross (BOSS
DR9); and blue circles (WiggleZ). The grey band shows the ap-
proximate ±1� range allowed by Planck (computed from the
CosmoMC chains).

which is almost independent of !m. To simplify the presenta-
tion, Fig. 15 shows estimates of rs/DV(z) and 1� errors, as
quoted by each of the experimental groups, divided by the ex-
pected relation for the Planck base ⇤CDM parameters. Note
that the experimental groups use the approximate formulae of
Eisenstein & Hu (1998) to compute zdrag and rs(zdrag), though
they fit power spectra computed with Boltzmann codes, such
as camb, generated for a set of fiducial-model parameters. The
measurements have now become so precise that the small di↵er-
ence between the Eisenstein & Hu (1998) approximations and
the accurate values of zdrag and rdrag = rs(zdrag) returned by camb
need to be taken into account. In CosmoMC we multiply the ac-
curate numerical value of rs(zdrag) by a constant factor of 1.0275
to match the Eisenstein-Hu approximation in the fiducial model.
This correction is su�ciently accurate over the range of !m and
!b allowed by the CMB in the base ⇤CDM cosmology (see e.g.
Mehta et al. 2012) and also for the extended ⇤CDM models dis-
cussed in Sect. 6.

The Padmanabhan et al. (2012) result plotted in Fig. 15 is
a reanalysis of the ze↵ = 0.35 SDSS DR7 sample discussed
by Percival et al. (2010). Padmanabhan et al. (2012) achieve a
higher precision than Percival et al. (2010) by employing a re-
construction technique (Eisenstein et al. 2007) to correct (par-
tially) the baryon oscillations for the smearing caused by galaxy
peculiar velocities. The Padmanabhan et al. (2012) results are
therefore strongly correlated with those of Percival et al. (2010).
We refer to the Padmanabhan et al. (2012) “reconstruction-
corrected” results as SDSS(R). A similar reconstruction tech-
nique was applied to the BOSS survey by Anderson et al. (2013)
to achieve 1.6% precision in DV(z = 0.57)/rs, the most precise
determination of the acoustic oscillation scale to date.

All of the BAO measurements are compatible with the base
⇤CDM parameters from Planck. The grey band in Fig. 15
shows the ±1� range in the acoustic-scale distance ratio com-
puted from the Planck+WP+highL CosmoMC chains for the base
⇤CDM model. To get a qualitative feel for how the BAO mea-

29

Planck collaboration XVI (2013)

BOSS DR9 CMASS

WiggleZSDSS-II DR7 LRG

6dF
BOSS DR11



!44

The first measurement of the BOSS Pl(k)
BOSS: Testing Gravity with the power spectrum multipoles 7

(ii) Systematic weights, w
sys

: In CMASS it has been
found that there seem to be correlations between the galaxy
density and the proximity to a star as well as between the
galaxy density and the seeing conditions for a particular
observation. These correlations are removed using galaxy
specific weights (systematic weights). Here we know only
statistically that there were missed galaxies, but never know
exactly where. To correct for these correlations we up-weight
observed galaxies depending on their proximity to stars and
the seeing condition for that particular observation. The cor-
rection is still not random, but it is linked to a Poisson
process (e.g. the existence of another galaxy around that
star). Therefore we argue that the systematic weights should
not reduce the shot noise. We also note that the systematic
weights are much smaller than the fibre collision and red-
shift failure weight and hence the impact to the shot noise
term is small.

The shot noise term defines how the galaxy density field
enters in the minimum variance weight, w

FKP

, and hence
the arguments discussed above result in a minimum variance
weight of the form:

w
FKP

(~x) =
1

1 +
n

0
g(~x)P0

w

sys

(~x)

. (21)

A detailed derivation can be found in appendix A. Since the
systematic weights employed in our analysis are very small,
our definition of w

FKP

is almost identical to the commonly
used

w
FKP

(~x) =
1

1 + n0
g

(~x)P
0

. (22)

If we would assume, that the systematic weights, w
sys

(~x),
reduce the shot noise, eq. 21 and eq. 22 would be identical.
The value of P

0

defines the power spectrum amplitude at
which the error is minimised. In this analysis we use P

0

=
20 000h�3 Mpc, which corresponds to k ⇠ 0.1h/Mpc.

Several studies in recent years reported deviations from
the pure Poisson shot noise assumption (Casas-Miranda et
al. 2002; Seljak, Hamaus & Desjacques 2009; Manera & Gaz-
tanaga 2010; Hamaus et al. 2010; Baldauf et al. 2013). Even
though we discussed our definition of the shot noise term at
length in this section, the parameter constraints we derive
in this paper are fairly independent of the precise definition,
since for all parameter constraints we are marginalising over
a constant o↵set, N (see section 6.1).

4 CMASS-DR11 MOCK CATALOGUES

In our analysis we use 1000 mock catalogues which follow
the same selection function as the CMASS-DR11 sample
(from now on called QPM mocks). The catalogues are pro-
duced by running low force- and mass-resolution particle-
mesh N-body simulations (White, Tinker & McBride 2013)
with 12803 particles in a [2560h�1 Mpc]3 box. These sim-
ulations have been found to better describe the clustering
of CMASS galaxies compared to the previous version of
CMASS mock catalogues (Manera et al. 2012), especially
at small scales (McBride et al. in prep. 2013). Each simula-
tion started from 2LPT initial conditions at z = 25 and
evolved to the present using time steps of 15% in ln(a),

k [h/Mpc]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(k
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CMASS-total
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Quadrupole

Figure 5. Relative error using the diagonal elements of the co-
variance matrix of the power spectrum multipoles in CMASS-
DR11. The upper three dashed lines show the quadrupole error
and the lower three solid lines show the error in the monopole. The
error in the northern part of CMASS-DR11 (black lines) is about
a factor of 1.6 smaller than the error in the southern part (red
lines). The power spectrum error for the entire CMASS-DR11
sample (blue lines) shows an error of ⇠ 1.5% in the monopole
and ⇠ 10% in the quadrupole at k = 0.1h/Mpc.

where a = (1 + z)�1 is the scale factor. The chosen fiducial
cosmology is ⌦

m

= 0.29, h = 0.7, n
s

= 0.97 and �
8

= 0.8.
At z = 0.7, 0.55, 0.4 and 0.25 we output a sub-sample of the
N-body particles and a catalog of halos with more than 32
particles generated by the friends-of-friends algorithm with
a linking length of 0.2 times the mean inter-particle spac-
ing. For each particle, we save the position, velocity, and
local density smoothed on 10h�1 Mpc scales. We extend the
halo catalog to lower masses by appointing a set of the sub-
sampled particles as halos and assigning them a mass using
the peak-background split mass function. The halos are then
populated by galaxies using the Halo Occupation Distribu-
tion (HOD) formalism with the occupation functions (see
e.g. Tinker et al. 2013)

hN
cen

i
M

=
1
2


1 + erf

✓
logM � logM

min

�
logM

◆�
, (23)

hN
sat

i
M

= hN
cen

i
M

✓
M

M
sat

◆
↵

exp

✓
M

cut

M

◆
. (24)

To generate the covariance matrix in the next section we
use M

min

= 9.319 ⇥ 1012h�1M�, �
logM

= 0.2, ↵ = 1.1,
M

sat

= 6.729⇥1013h�1M� and M
cut

= 4.749⇥1013h�1M�.
In section 7 we will modify the HOD parameters to test
possible systematic e↵ects in our modelling of the power
spectrum. For more details about the QPM mock catalogues
see McBride et al. in prep. (2013).

4.1 The covariance matrix

We measure the power spectrum monopole and quadrupole
for each of the 1000 QPM mocks, using the estimator in-
troduced in section 3. The covariance matrix is then given
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Figure 3. The measured CMASS-DR11 monopole (top) and quadrupole (bottom) power spectra. The black data points are the mea-
surement of the north and the red data points are the measurement of the southern part of CMASS-DR11. The black data points have
been shifted by �k = 0.001h/Mpc to the right for clarity. The error bars are the diagonal of the covariance matrix. Because of the
smaller volume in the south the error bars are larger by a factor of ⇠ 1.6. The solid black and red lines represents the best fitting
power spectra for the north (black) and south (red) respectively (fitting range k = 0.01 - 0.20h/Mpc, see section 8.1). The red and
black lines are based on the same cosmology and only di↵er in the e↵ect of the window function (see section 5). The lower two panels
show the di↵erence between the measured monopole and the best fitting monopole (middle panel) and the measured quadrupole and
the best fitting quadrupole (bottom panel), both relative to the diagonal element of the covariance matrix. We fit the monopole and
quadrupole simultaneously. The best fitting �2 is 66.6 + 73.9 = 140.5 (north + south) for 152 bins and 7 free parameters (see Table 2).
The contribution to �2 from the monopole and quadrupole alone is given in the middle and lower panel, for comparison.

erage over spherical k-space shells

P`(k) = hP`(~k)i = 1
Vk

Z

k-shells

d~k P`(~k) (16)

=
1

Nmodes

X

k��k
2

<|~k|<k+�k
2

P`(~k), (17)

where Vk is the volume of the k-space shell and Nmodes is
the number of ~k modes in that shell. In our analysis we use
�k = 0.005h/Mpc.

The method described above has a bias at larger
scales arising from the discreteness of the gridding in k-
space (Blake et al. 2011a). The e↵ect can be estimated by
comparing a model power spectrum with a gridded model

c� 0000 RAS, MNRAS 000, 000–000

These are the anisotropic P(k) firstly measured in the BOSS sample.

Impressive precision level! ~1% for monopole & ~10% for quadrupole.
The difference b/w north and south is due to the survey window.

Beutler, SS, Seo et al. (2013)
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Figure 12. The best fitting values for fk, f? and f�8/[f�8]fid

for the di↵erent systematics tests performed in this analysis us-
ing the fitting range k = 0.01 - 0.15h/Mpc and k = 0.01 -
0.20h/Mpc. The data points have been shifted away slightly from
kmax = 0.15h/Mpc and kmax = 0.20h/Mpc for clarity. The black
data points are obtained from the comparison with N-body sim-
ulations (see section 7.1). The blue data points show the result
when using 1-loop perturbation theory (see section 7.2). The red
data points show the result when varying the underlying HOD
(see section 7.3). For this plot we restrict ourself to the case
Msat�1� = 5⇥1013M�/h, which has the largest deviation from
the CMASS HOD. The blue and black data points have error-
bars a factor of ⇠

p
999 smaller than the plotted statistical error

(gray line). The HOD tests have been performed on the mean of
20 mock catalogues and hence have errors ⇠

p
20 smaller than

the statistical errors.

tral galaxies (Hikage, Takada & Spergel 2012a; Hikage et al.
2012b; Hikage & Yamamoto 2013) and the kinematical fea-
tures of the satellite galaxies (Masaki et al. 2012; Nishimichi
& Oka 2013). These issues are beyond the scope of this
paper and should be addressed using the galaxy cluster-
ing or the galaxy-galaxy lensing signal at somewhat smaller
scales where the 1-halo term is more dominant (for CMASS
see Miyatake et al. 2013; Reid et al. in prep.). Nevertheless,
we believe that our results should be fairly robust against
such e↵ects, since we do not confirm any significant di↵er-
ences when changing the fitting range (see Table 2 and the
discussion in section 8.2).
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Figure 13. We plot the mean of the power spectrum monopole
and quadrupole measured from 20 CMASS mock catalogues with
varying HOD relative to the power spectrum monopole using the
fiducial HOD parametrisation of section 4. The red lines show the
power spectrum multipoles where we varied ↵ (see section 7.3 for
details) while the blue and black lines show variations in �logM

and Msat, respectively.

7.4 Uncertainty in the underlying linear matter
power spectrum

The BOSS dataset, like all galaxy redshift survey datasets,
cannot constraint all ⇤CDM parameters just by itself. Only
the latest CMB datasets are able to do that. Our analy-
sis therefore makes use of the information coming from the
analysis of the CMB, in a sense that we take the cosmo-
logical parameters found in Planck and use them as initial
conditions. We than test whether such initial conditions lead
to the clustering signal measured with our dataset. In our
model we are using a power spectrum with fixed cosmologi-
cal parameters. The assumption here is, that the Planck un-
certainty in most of the parameters which define the shape of
the power spectrum is much smaller than the uncertainty of
our measurement and hence can be neglected. This assump-
tion has been found to be reasonable for the CMASS-DR9
dataset combined with WMAP7 (Reid et al. 2012). We re-
peat the test of Reid et al. (2012), where we only consider
the Planck uncertainty in !c = ⌦ch

2, representing the least
well constrained parameter important for our analysis. We
than calculate the quantity

s =
�p

�!c

�!c

�p
, (63)

where �p stands for the change in our parameter constraint
when changing !c by �!c and �p is the uncertainty in
the parameter p at fixed !c. The uncertainty in p when
marginalised over !c is increased by

p
1 + s2 assuming Gaus-

sian probability distribution functions. By fitting the mean
of the 999 mock catalogues and using the fitting range
k = 0.01 - 0.20h/Mpc we found �p = (0.031, 0.016, 0.038)
for fk, f? and f(ze↵)�8(ze↵), respectively. For �!c = 0.02
we found �fk = 0.015 , �f? = 0.016 and �f(ze↵)�8(ze↵) =
0.008 leading to s = 0.07, s = 0.14 and s = 0.03, respec-
tively. These results imply, that the error in f? would in-
crease by only 1.0% if the Planck errors are propagated to

c� 0000 RAS, MNRAS 000, 000–000

16 Florian Beutler et al.

Table 1. Summary of systematic uncertainties of fk, f? and f(ze↵)�8(ze↵). The shift parameters fk and f? are closely related to
H(ze↵) and DA(ze↵), respectively. The di↵erent lines in this table are: Comparison to N-body simulations (see section 7.1), comparison
between 1-loop and 2-loop perturbation theory (PT) (see section 7.2) and varying the underlying HOD (see section 7.3). In case of the
HOD test we include the result for Msat � 1� = 5⇥ 1013M�/h, which represents the largest variation compared to the CMASS HOD.
We find significant systematic uncertainties only for f(ze↵)�8(ze↵). Based on these uncertainties we chose kmax = 0.20h/Mpc, since
this is where the error on f(ze↵)�8(ze↵) is minimised (using the quadrature sum of the statistical and the largest systematic error). For
comparison in the last row we included the expected statistical uncertainty for each parameter with di↵erent kmax, which we obtained
by fitting the mean of the 999 mock catalogues using the data covariance matrix.

source fk [H(ze↵)] f? [DA(ze↵)] f(ze↵)�8(ze↵)
kmax [h/Mpc] 0.15 0.20 0.15 0.20 0.15 0.20

model test 0.11± 0.13% 0.00± 0.10% 0.352± 0.061% 0.052± 0.049% �0.66± 0.29% �3.08± 0.26%
PT test 0.04± 0.14% �0.32± 0.12% �0.075± 0.074% 0.168± 0.060% �0.65± 0.33% �1.01± 0.30%
HOD test �1.07± 0.89% 0.21± 0.67% �0.09± 0.42% 0.50± 0.38% 2.6± 2.4% 1.5± 2.1%

statistical error 4.0% 3.1% 1.9% 1.6% 9.1% 8.3%

shift ze↵ = 0.57 with a Planck cosmological model we get
kcrit = 0.28h/Mpc.

To get a rough upper limit on the uncertainty of us-
ing corrections only up to second order, we calculate the
power spectra at 1-loop order and measure the amplitude
di↵erences of the power spectra at di↵erent wave-numbers.
We found �P�� of (0.5, 0.2, 3.2)% at k =(0.10, 0.15,
0.20)h/Mpc. The corresponding values for �P�✓ are (3.4,
5.2, 4.8)% and for �P✓✓ we find (6.3, 10.3, 12.2)%. While
these di↵erences seem very significant, we are actually only
interested in the bias these uncertainties introduce in our
cosmological parameters. We use the 1-loop power spectra
calculated from RegPT instead of the 2-loop power spectra
and build our model following section 6.1. We then fit this
model to the mean of the 999 QPMmock power spectra. The
shifts in the cosmological parameters are shown in Table 1
and Figure 10 (right). We see a shift of 1.0% in f(ze↵)�8(ze↵)
when using the fitting range k = 0.01 - 0.20h/Mpc, while
the shifts in fk and f? are much smaller.

Figure 10 (right) shows the extended TNS model using
2-loop and 1-loop perturbation theory. The 1-loop case has
a larger amplitude in the quadrupole, while the monopole is
much less a↵ected. These uncertainties are caused mainly by
the big changes in P✓✓ going from the 2-loop to 1-loop calcu-
lation. Most of this di↵erence can be absorbed by nuisance
parameters like �v. This is also included in Figure 10 (right)
as the dotted blue line, where we use the 1-loop calculations,
but changed �v from 4.0Mpc/h to 4.2Mpc/h bringing the
model in good agreement with the 2-loop calculation (solid
magenta line). This is the reason, why the large di↵erence in
the power spectrum amplitude does not transfer into large
di↵erences in the actual parameter constraints.

7.3 The impact of di↵erent HODs

Here we want to test how sensitive our power spectrum
model is to the underlying HOD. Ideally one would want to
constrain the HOD parameters together with the cosmolog-
ical parameters, by using all information in the galaxy clus-
tering, down to very small scales. However, current model
uncertainties do not allow such studies.

The CMASS-DR11 mock catalogues which we intro-
duced in section 4 are populated with a specific HOD model.

The question is, whether our ability to extract the correct
cosmological parameters does depend on this HOD?

To test this, we create CMASS-DR11 catalogues, based
on the same original simulation box as the mock cata-
logues used in section 4, but populated with di↵erent HODs.
We vary the three HOD parameters (�logM , ↵ and Msat)
by the 1� uncertainties reported in White et al. (2011).
The explicit variations are (��

log M = 0.04, �↵ = 0.2 and

�M
sat

= 1.3 ⇥ 1013M�/h). We choose Mmin so that the
number density is kept fixed. Because White et al. (2011)
used a dataset about 10 times smaller than CMASS-DR11,
the real uncertainties on the HOD parameters should be
significantly smaller. For each new set of HOD parameters
we create 20 mock catalogues. We calculate the mean of
the 20 power spectra and fit our model to it. We show the
power spectrum monopole and quadrupole for the di↵erent
HODs in Figure 13. As expected, di↵erent HODs mainly
a↵ect the amplitude of the monopole, but do not cause sig-
nificant changes in the shape even at k = 0.20h/Mpc.

All parameter fits resulted in constraints on fk, f?
and f(z)�8(z) in fairly good agreement with the original
HOD parameterisation (black dashed line in Figure 13).
Since we are only fitting the mean of 20 mock catalogues
for each HOD model, we are only sensitive to shifts ⇠ 5
times smaller than our measurement uncertainties2. How-
ever, we consider this level of accuracy to be su�cient
for the purpose of this analysis. We include the result for
Msat � 1� = 5 ⇥ 1013M�/hin Table 1 and Figure 12, since
this is where we found the largest deviation from the CMASS
HOD.

RSDs are induced by the peculiar velocities which are
assumed to follow the underlying dark matter field. Vio-
lations of this assumption are usually called velocity bias.
In our analysis we do not consider the issues related to
the velocity bias, which could have a non-negligble impact.
We here simply assume that the galaxies follow the veloc-
ity field of dark matter halos. There are various scenarios,
which could a↵ects the galaxy peculiar velocity field, such
as the velocity bias related to the peak formation (Bardeen
et al. 1986; Desjacques & Sheth 2010), the o↵set of the cen-

2 Since we are using the same cosmic volume as in the original
mock catalogues our sensitivity is a little bit better than just a
factor of 5.
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✔ Against mock catalog (LCDM simulation+HOD)

✔ 7 Free parameters !
    - parameters of interest:  !
    - galaxy bias:  !
    - FoG suppression:

✔ Passed 3 types of tests !
    - our fiducial model (also WMAP/Planck) !
    - PT uncertainties in theoretical modeling !
    - HOD uncertainties in mock catalog
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Table 2. The maximum likelihood and mean together with the 1� error for the main cosmological parameters (first 3 rows), the 4
nuisance parameters (middle 4 rows) as well as several derived parameters (last 7 rows). While we report the results for two di↵erent
fitting ranges, we regard the results for the fitting range k = 0.01 - 0.20h/Mpc as the main results of this work. Our measurements have an
e↵ective redshift of ze↵ = 0.57. The e↵ective wave-number is ke↵ = 0.132h/Mpc when using kmax = 0.15h/Mpc and ke↵ = 0.178h/Mpc
when using kmax = 0.20h/Mpc (see section 6.4). The best fitting �2/d.o.f. is 90.3/(112� 7) and 140.5/(152� 7) when using the smaller
and larger fitting range, respectively. We include the systematic error on f�8 for the larger fitting range (note that the systematic
error has to be added in quadrature, resulting in f(ze↵)�8(ze↵) = 0.419 ± 0.044). The last three rows of the table contain the derived
parameter � = f(ze↵)�8(ze↵)/[b1�8(ze↵)], as well as the bias parameters b1 and b2. To derive the bias parameters we assumed a fiducial
�fid
8 (z = 0) = 0.80. Since the cosmological parameters included in this table are correlated, we recommend to use the multivariate

Gaussian likelihood presented in section 8.3.

fitting range 0.01 - 0.15h/Mpc 0.01 - 0.20h/Mpc
best fit mean ±1� best fit mean ±1�

fk 1.008 1.005± 0.057 1.014 1.018± 0.036
f? 1.026 1.029± 0.023 1.029 1.029± 0.015

f(ze↵)�8(ze↵) 0.420 0.423± 0.052 0.422 0.419± (
stat
0.042 +

sys
0.014)

b1�8(ze↵) 1.221 1.222± 0.044 1.221 1.224± 0.031
b2�8(ze↵) 1.7 0.7± 1.2 �0.21 �0.09± 0.62

�v 4.6Mpc/h 4.3± 1.3Mpc/h 4.63Mpc/h 4.65± 0.81Mpc/h
N 1030 [Mpc/h]3 1080± 620 [Mpc/h]3 1890 [Mpc/h]3 1690± 600 [Mpc/h]3

DV (ze↵)/rs(zd) 13.83 13.85± 0.27 13.88 13.89± 0.18
FAP(ze↵) 0.684 0.686± 0.046 0.683 0.679± 0.031

H(ze↵)rs(zd)/rfids (zd) 94.0 km/s/Mpc 94.1± 5.4 km/s/Mpc 93.5 km/s/Mpc 93.1± 3.3 km/s/Mpc
DA(ze↵)rfids (zd)/rs(zd) 1385Mpc 1389± 31Mpc 1389Mpc 1388± 22Mpc

� 0.344 0.346± 0.043 0.346 0.342± 0.037
b1 ⇥ (0.8/�8) 2.035 2.037± 0.073 2.035 2.040± 0.052
b2 ⇥ (0.8/�8) 2.8 1.2± 2.0 �0.4 �0.2± 1.0

contribution is 68.7, again with 76 bins each4. Overall we
find a better fit for the northern part than for the south-
ern part and a better fit for the quadrupole than for the
monopole.

Using the fitting range k = 0.01 - 0.15h/Mpc we find
fk = 1.005± 0.057, f? = 1.029± 0.023 and f(ze↵)�8(ze↵) =
0.423 ± 0.052. The constraints on fk and f? can again be
expressed as DV (ze↵)/rs(zd) = 13.85 ± 0.27 and FAP =
0.686±0.046 or alternatively H(ze↵)rs(zd)/r

fid
s (zd) = 94.1±

5.4 km/s/Mpc and DA(ze↵)r
fid
s (zd)/rs(zd) = 1389±31Mpc.

For the nuisance parameters we find b1�8(ze↵) = 1.222 ±
0.044, b2�8(ze↵) = 0.7 ± 1.2, �v = 4.3 ± 1.3Mpc/h and
N = 1080± 620. The �2/d.o.f of our best fit is 90.3/105.

In Figure 14 we show the constraints on DV /rs, FAP

and f�8 comparing our results using the fitting range k =
0.01 - 0.20h/Mpc in cyan and k = 0.01 - 0.15h/Mpc in
brown. While the constraints weaken for the brown contours
due to the smaller number of modes, the two fits give very
similar best fitting values.

8.3 To use our results

In this subsection, we present our main results for future
use, i.e. best-fitting values of two geometric constraints
(DV /rs(zd) and FAP) and one RSD parameter together with
the covariance matrix marginalised over the nuisance param-
eters. If readers are interested in using our constraints to test

4 The sum of the monopole and quadrupole contributions does
not add up to the best fitting �2 of 140.5, because of the cross-
correlation between the monopole and quadrupole.

cosmological models or modifications of GR, they should be
aware of the assumptions underlying our constraints given
in section 6.3.

Since we present our result in a di↵erent base compared
to the base we used for the study of systematics in section 7,
we made sure that the negligible systematic uncertainties in
fk and f? transfer into negligible shifts in DV /rs and FAP.
For most purposes our results can be well approximated by
a multivariate Gaussian likelihood with

V data
k
max

=0.20 =

0

@
DV (ze↵)/rs(zd)

F (ze↵)
f(ze↵)�8(ze↵)

1

A =

0

@
13.88
0.683
0.422

1

A (70)

and the symmetric covariance matrix is given by

103Ck
max

=0.20 =

0

@
36.400 �2.0636 �1.8398

1.0773 1.1755
1.8478 + 0.196

1

A

(71)
leading to

C�1
k
max

=0.20 =

0

@
31.032 77.773 �16.796

2687.7 �1475.9
1323.0

1

A . (72)

For f�8 we included the systematic error of 3.1% (see
section 7), where we assumed uncorrelated systematic er-
rors. The diagonal elements of the inverse covariance ma-
trix represent the error on the di↵erent parameters when
not marginalising over the other parameters. For example
for the growth rate we find f(ze↵)�8(ze↵) = 0.422 ± 0.027.
Note, that this constraint assumes that we know the geome-
try of the Universe exactly and neglects the large correlation
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Figure 14. Two dimensional likelihood distribution of DV (ze↵)/rs(zd) and FAP(ze↵) (top left), b1�8(ze↵) and f(ze↵)�8(ze↵) (top
right), FAP(ze↵) and f(ze↵)�8(ze↵) (bottom left), DV (ze↵)/rs(zd) and f(ze↵)�8(ze↵) (bottom right). We show the 68% and 95%
confidence regions. The plot on the top right also includes the result of Samushia et al. in prep (2013). All contours are directly derived
from the MCMC chains and do not include the systematic uncertainties. The crosses mark the maximum likelihood values with colours
corresponding to the contours. In all plots we also compare to Planck+WP within ⇤CDM (green contours) and WMAP9 within ⇤CDM
(magenta contours).

between f�8 and FAP. We recommend to use the full mul-
tivariate Gaussian for any cosmological model constraints.

We encourage the use of our results for kmax =
0.20h/Mpc, but we also provide the results using kmax =
0.15h/Mpc. The maximum likelihood values for the fitting
range k = 0.01 - 0.15h/Mpc are
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and the symmetric covariance matrix is given by
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Figure 17. Comparison between Planck+WP (Ade et al. 2013a),
Planck SZ clusters (Ade et al. 2013b), CFHTLS lensing (Kilbinger
et al. 2013) and our results in �8-⌦m. When using only the f�8

constraint from our analysis (orange contours), there is a degen-
eracy, similar to the cluster and lensing datasets. The geometric
information can break this degeneracy. While the AP e↵ect is
only depending on ⌦m, our DV /rs constraint does require cali-
bration of the sound horizon. We show the results, where we fix
the sound horizon to the value of Planck+WP (blue contours)
and the value reported by WMAP9 (green contours). The results
are summarised in Table 3. To turn our f�8 constraint into a
constraint on �8 we assume GR (� = 0.55) and ⇤CDM similar to
the Planck contours (brown contours). The tension in �8 between
our measurement and Planck+WP is directly related to the large
� we find in our ⇤CDM consistency check in section 9.1.

Additionally we can include the BAO information
(DV /rs), where we however have to fix the sound hori-
zon size rs. In Figure 17 we show the constraint using
the sound horizon of Planck+WP (blue contours) and
WMAP9 (green contours). We use the sound horizon in co-
moving units rPlanck

s (zd) = 98.79Mpc/h and rWMAP9
s (zd) =

102.06Mpc/h, which includes information about the Hubble
constant. Our constraint on DV /rs together with the sound
horizon from the CMB allows tight constraints on ⌦m, while
the constraint on �8 does not improve significantly (see Ta-
ble 3 for details).

10 CONCLUSION

This paper analyses the BOSS CMASS-DR11 dataset em-
ploying a power spectrum estimator suggested by Yamamoto
et al. (2006), which allows us to measure the power spec-
trum monopole and quadrupole in a wide-angle survey like
BOSS. We use Quick-Particle-Mesh (QPM) simulations to
produce 999 mock catalogues to derive a covariance matrix.
The covariance matrix shows little correlation between the
di↵erent bins in the power spectrum, which is very di↵erent
to similar studies using the correlation function.

Our model of the multipole power spectrum accounts
for nonlinear evolution on the basis of perturbation theory.
We adopt the modelling of non-linear redshift-space distor-
tion by Taruya, Nishimichi & Saito (2010) and extend this
approach to include the local and non-local galaxy bias with
its stochasticity.

The parameter fits using the fitting range k = 0.01 -
0.20h/Mpc are considered the main results of this paper.
We provide a multivariate Gaussian likelihood to use our
results for cosmological constraints.

Our analysis has been performed blind, meaning that
all systematics checks and the set-up of the fitting procedure
has been done on mock catalogues and only at the last stage
did we analyse the actual CMASS-DR11 power spectrum
measurement. The results of our analysis can be summarised
in the following five points:

(i) We provide a set of equations (eq. 32, 33, 36, 37),
which allows us to incorporate the window function and the
integral constraint into our analysis in a self-consistent man-
ner, without using any simplifying assumptions and without
the need to split the survey into sub-regions.

(ii) Our study of systematic uncertainties lead to a max-
imum wavenumber of kmax = 0.20h/Mpc for our analysis,
where the total error of f(ze↵)�8(ze↵) is minimised. Our fi-
nal systematic uncertainty for f(ze↵)�8(ze↵) is 3.1% when
using the fitting range k = 0.01 - 0.20h/Mpc. The geometric
parameters fk and f? (DV /rs and FAP) do not show any
significant systematic uncertainties.

(iii) Our power spectrum model includes 7 free parame-
ters. The two geometric parameters, fk and f?, the growth
rate f(ze↵)�8(ze↵) and 4 nuisance parameters. We find
fk = 1.018±0.036, f? = 1.029±0.015 and f(ze↵)�8(ze↵) =
0.419±0.044, where we included the systematic uncertainty
of 3.1%. The geometric parameters fk and f? can be ex-
presses as DV (ze↵)/rs(zd) = 13.89 ± 0.18 and FAP(ze↵) =
(1 + ze↵)DA(ze↵)H(ze↵)/c = 0.679 ± 0.031. While the ge-
ometric parameters found in our analysis agree very well
with the Planck prediction within ⇤CDM, the growth rate
is about 1.4� below the Planck prediction. We provide a
multivariate Gaussian likelihood to use our results (see sec-
tion 8.3). We stress that our measurement is based on a
set of assumptions described in section 6.3, that should be
keep in mind when using our results. All results are sum-
marised in Table 2, where we also provide the parameter con-
straints using the more conservative fitting range k = 0.01 -
0.15h/Mpc.

(iv) We performed a ⇤CDM-GR consistency check within
the Planck cosmology, which results in a measurement of the
growth index � = 0.772+0.124

�0.097. This value excludes the GR
prediction of � ⇡ 0.55 with 96.6% confidence level. When
replacing Planck with WMAP9 we find a very similar re-
sult of � = 0.76 ± 0.11. We conclude that there is tension
between our result combined with Planck (WMAP9) and
the prediction by GR. This tension could be (1) a statisti-
cal fluctuation, (2) an indication for unaccounted systematic
uncertainties in CMASS and/or Planck (WMAP9) or (3) ask
for modifications in ⇤CDM or GR.

(v) Assuming ⇤CDM and GR we can use our measure-
ment of the growth rate (f�8) together with the informa-
tion from the Alcock-Paczynski e↵ect (FAP) to constrain
�8 = 0.731±0.052. The low value of �8 is directly connected

c� 0000 RAS, MNRAS 000, 000–000
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This could suggest to extend cosmology to reduce      by 10%
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Table 3. This table summarises cosmological parameter constraints obtained in section 9 using CMASS-DR11. The first four rows
contain constraints on the growth index � and ⌦m when combining CMASS with Planck+WP and WMAP9 (see Figure 16). The fifth
and sixth row contains constraints on �8 and ⌦m using only the growth rate and the AP e↵ect (f�8 and FAP) of the CMASS dataset.
The last four rows contain constraints on �8 and ⌦m using all CMASS-DR11 constraints (DV /rs, FAP and f�8) and assuming the
sound horizon of Planck+WP or WMAP9 (see Figure 17) in co-moving units. In this case the constraint on ⌦m is dependent on the
CMB experiment used to calibrate the standard ruler, while the constraint on �8 is fairly independent of this choice.

parameter constraint based on assumptions

section 9.1
� 0.772+0.124

�0.097 CMASS-(DV /rs, FAP, f�8) + Planck+WP ⇤CDM, ⌦�
m(z)

⌦m 0.308± 0.011 CMASS-(DV /rs, FAP, f�8) + Planck+WP ⇤CDM, ⌦�
m(z)

� 0.76± 0.11 CMASS-(DV /rs, FAP, f�8) + WMAP9 ⇤CDM, ⌦�
m(z)

⌦m 0.298± 0.013 CMASS-(DV /rs, FAP, f�8) + WMAP9 ⇤CDM, ⌦�
m(z)

section 9.2
�8 0.731± 0.052 CMASS-(FAP, f�8) ⇤CDM, ⌦0.55

m (z)
⌦m 0.33+0.15

�0.12 CMASS-(FAP, f�8) ⇤CDM, ⌦0.55
m (z)

�8 0.719± 0.047 CMASS-(DV /rs, FAP, f�8) ⇤CDM, ⌦0.55
m (z), rPlanck

s (zd) = 98.79Mpc/h
⌦m 0.341± 0.028 CMASS-(DV /rs, FAP, f�8) ⇤CDM, ⌦0.55

m (z), rPlanck
s (zd) = 98.79Mpc/h

�8 0.713± 0.047 CMASS-(DV /rs, FAP, f�8) ⇤CDM, ⌦0.55
m (z), rWMAP9

s (zd) = 102.06Mpc/h
⌦m 0.274± 0.023 CMASS-(DV /rs, FAP, f�8) ⇤CDM, ⌦0.55

m (z), rWMAP9
s (zd) = 102.06Mpc/h
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Figure 16. The 2D likelihood distribution for � and ⌦m from Planck+CMASS (left) and WMAP9+CMASS right. We show the 68%
and 95% confidence regions. The di↵erent contours are for the CMB constraints alone (blue lines), CMB + f�8 from CMASS-DR11
(brown contours) and CMB + (DV /rs, FAP, f�8) from eq. 73 and 75 (cyan contours). Since we do not exploit the ISW e↵ect for this
test, the CMB datasets cannot set constraints on �. The CMB data are needed for tight constraints on ⌦m and for the normalisation of
the power spectrum, �8(z).

⌦m compared to Planck+WP (Ade et al. 2013a), Planck
SZ clusters (Ade et al. 2013b) and CHFTLS lensing (Kil-
binger et al. 2013). Using the CMASS f�8 measurement
alone, there is a degeneracy between �8 and ⌦m similar to
the lensing and cluster constraints. This degeneracy can be
broken when including the geometric information (FAP and
DV /rs). We can see that Planck+WP predicts a large �8 in
tension with the other datasets included in this comparison
(see also Mandelbaum et al. 2013). The large normalisation
�8 of Planck+WP directly leads to the large � we found in
our consistency check above. Therefore Figure 17 shows that
we can relax the tension between our measurement and GR

by using the normalisation from one of the other datasets
shown in this Figure.

9.2 Constraining �8 with CMASS-DR11

Assuming ⇤CDM and GR in the form ⌦0.55
m (z) we can use

our constraint on the growth of structure (f�8) and the
AP e↵ect (FAP) to set the constraint �8 = 0.731 ± 0.052
(cyan contours in Figure 17). Our dataset is therefore one of
the few low redshift datasets, which is powerful enough to
constraint �8 independently. We can also get a fairly weak
constraint on the matter density of ⌦m = 0.33+0.15

�0.12.
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(GR)

GR GR

Interestingly, RSD+AP leads to larger γ, i.e., weaker gravity than GR  
at ~2σ level, independently of the CMB prior choice

Remark that this is just a LCDM+GR consistency check! 
In general, model-dependent analysis would be necessary

e.g., Taruya et al. 2013
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Summary

The low redshift measurements are necessary to break CMB  
limit to constrain the neutrino mass

Galaxy survey provides us a unique opportunity to measure  
	 - distance from BAO 
	 - growth from P(k) shape & RSD

Given the discrepancy b/w WMAP & Planck, it seems early to  
conclude anything.


