Recent results from SK on solar and SN neutrinos and the SK-Gd project

Lluís Martí Magro, Kavli IPMU ICRR workshop, December 19th, 2015. Kashiwa

Why are solar neutrinos interesting?

Two energy dependent oscillation domains at low energies vacuum oscillation dominates while above ~3 MeV resonant conversion inside the Sun occurs.

Because of the earth matter effect, v_e regenerate. Thus, ⁸B flux is expected to be larger at night.

night

day

Solar neutrinos

Resolution: 14% @10MeV

З

Detection: $v e^- \rightarrow v e^-$

Threshold: $E_{kin} < 3.5 \text{ MeV}$

Recently: hit-threshold $34 \rightarrow 31$ Eff. 91.8% \rightarrow 99.6% @3.5-4.0 E_{kin} Eff. 99.8% \rightarrow 100% @4.0-4.5 E_{kin}

Large statistics: ~20 events/day

-01-11-02-11-21

Solar ⁸B Neutrinos: angular distribution and flux

Solar ⁸B Neutrinos: angular distribution and flux

Solar Neutrinos vs #Sunspots

Sunspot Data: http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt

No clear Solar neutrino vs sunspot number correlation is seen.

Search for the up-turn with the recoil electron spectrum

MSW is slightly disfavoured:

- \rightarrow ~1.7 σ with the solar+KamLAND best fit parameters
- \rightarrow ~1 σ with the global solar best fit parameters

Day-Night Asymmetry

Straight-forward method: Separately measure the day and night solar neutrino flux. Then calculate the asymmetry:

Supernova Detection

- One of the major goals at Super-K is to detect a ccSN.
- In our galaxy these are expected to happen 1-2 a century.
 - Astronomers are interested in recording such event from the beginning of the electromagnetic signal onset.
 - Therefore, it is very important to be prepared!
 - Keep SN live time as high as possible
 - Be prepared to deliver a warning to the community as soon as possible

q

- Three warning types:

- Golden: 100% eff. @ LMC (50 kpc)
- Normal: 100% eff. @ SMC (64 kpc)
- Silent: lower thresholds. ~few/day

The goal is to announce the burst time, # of events and estimated SN direction within 1 hour world-wide

Supernova Detection: efficiencies

Efficiencies mostly depend on:

- the number of inverse beta decay events
- the spectrum of the ν_e (different for NH and IH)
 - Three warning types:
 - Golden: 100% eff. @ LMC (50 kpc)
 - Normal: 100% eff. @ SMC (64 kpc)
 - Silent: lower thresholds. ~few/day

Supernova Detection: efficiencies

Efficiencies mostly depend on:

- the number of inverse beta decay events
- the spectrum of the v_e (different for NH and IH)
 - Three warning types:
 - Golden: 100% eff. @ LMC (50 kpc)
 - Normal: 100% eff. @ SMC (64 kpc)
 - Silent: lower thresholds. ~few/day

The goal is to announce the burst time, # of events and estimated SN direction within 1 hour world-wide

Supernova Relic Neutrino

<u>Supernova relic neutrinos</u> (SRN) are those neutrinos from all the past core collapse supernovae in the history of the universe.

- \rightarrow <u>Large backgrounds</u> dominate this analysis.
- → Measurement limits are getting <u>closer to predictions</u>.
- \rightarrow Expand the energy range starting from 10 MeV.

Supernova Relic Neutrino: How to

Supernova Relic Neutrino: How to

Antineutrino Spectroscopy with Large Water Čerenkov Detectors

John F. Beacom¹ and Mark R. Vagins²

¹NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA ²Department of Physics and Astronomy, 4129 Reines Hall, University of California, Irvine, California 92697, USA (Received 25 September 2003; published 20 October 2004)

We propose modifying large water Čerenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with $\sum E_{\gamma} = 8$ MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction $\bar{\nu}_e + p \rightarrow e^+ + n$ (similarly for $\bar{\nu}_{\mu}$). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, galactic supernova detection, and other topics are discussed.

DOI: 10.1103/PhysRevLett.93.171101

PACS numbers: 95.55.Vj, 29.40.Ka

Antineutrino Spectroscopy with Large Water Čerenkov Detectors

John F. Beacom¹ and Mark R. Vagins²

¹NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA ²Department of Physics and Astronomy, 4129 Reines Hall, University of California, Irvine, California 92697, USA (Received 25 September 2003; published 20 October 2004)

We propose modifying large water Čerenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with $\sum E_{\gamma} = 8$ MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction $\bar{\nu}_e + p \rightarrow e^+ + n$ (similarly for $\bar{\nu}_{\mu}$). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, galactic supernova detection, and other topics are discussed.

DOI: 10.1103/PhysRevLett.93.171101

PACS numbers: 95.55.Vj, 29.40.Ka

GADZOOKS! Proposal

M. Ikeda,¹ Y. Kishimoto,^{1, 2} M. Nakahata,^{1, 2} H. Sekiya,^{1, 2} Ll. Marti,² M. R. Vagins,^{2, 4}

H. Ishino,³ A. Kibayashi,³ Y. Koshio,³ T. Mori,³ M. Sakuda,³ C. Xu,³

N. J. Griskevich,⁴ W. R. Kropp,⁴ A. Renshaw,⁴ M. B. Smy,^{4,2} P. Weatherly,⁴

P. Fernandez,⁵ L. Labarga,⁵ Y. Takeuchi,^{6, 2} T. Yano,⁶ and R. Akutsu⁷

(The GADZOOKS! Working Group)

¹Kamioka Observatory, Institute for Cosmic Ray Research,

University of Tokyo, Kamioka, Gifu 506-1205, Japan

²Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of

Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

³Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan

⁴Department of Physics and Astronomy, University

of California, Irvine, Irvine, CA 92697-4575, USA

⁵Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain

⁶Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan

⁷Research Center for Cosmic Neutrinos, Institute for Cosmic Ray

Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

(Dated: June 16, 2015)

Water Transparency: the water transparency is being constantly monitored to ensure a high quality and no time degradation

Water Purification system: the purification system should remove all impurities for a high water transparency (including ions except Gd)

How to Add/Remove Gd: how uniformly can Gd be dissolved? How quickly/economically/completely can Gd be removed?

Material Effects: are there any effects on the detector components? examination of the tank components and water quality monitoring

Neutron Background: since ambient neutrons are going to be seen, how will this affect the trigger rates and the current analyses?

Water Quality

Water transparency in the typical SK rangeeven after full Gd loading

On June 27, 2015, the Super-Kamiokande collaboration approved the SuperK-Gd project which will enhance anti-neutrino detectability by dissolving gadolinium to the Super-K water. The actual schedule of the project including refurbishment of the tank and Gd-loading time will be determined soon taking into account the T2K schedule.

SuperK-Gd is moving forward!!

Summary

SuperK has an overwhelming solar neutrino data sample

- Solar neutrino flux constant along al SK phases and no correlation with sunspots is seen.

- Solar neutrino spectrum: data shows a small preference for no distortions

- Solar neutrino day/night asymmetry: data shows a first indication of earth matter effects on ⁸B solar neutrinos (2.8-3.0 σ).

SuperK is the only detector with SN pointing capabilities:

- It is our task to provide astronomers with an early warning
- SK has a dedicated real time burst monitor
- The goal is to provide an early warning within 1 hour

SuperK looks into the future with the SuperK-Gd project:

- After an extensive R&D program with EGADS no showstopper for the SuperK-Gd project was seen and the collaboration approved to move forward.

- Time schedule to be determined together with T2K

BACKUP

In case of core collapse Supernova burst the pointing accuracy would improve from ~4-5° \rightarrow 3° (90% C.L.) @ 10 kpc

Others:

Nearby SN burst early warning Reduce backgrounds for proton decay searches Neutrino/anti-neutrino identification Etc.....

Expected signal and background

Expect number of events in 10 years in $E_{total} = 10-30 \text{ MeV}$

<u>Assuming</u>

Capture efficiency of 90% and Gd gamma detection efficiency of 74%.

Invisible muon B.G. is 35% of the SK-IV invisible muon BG.

Min/nominal/Max are due to uncertainties in astronomy.

Background: ~18 ev.

Galactic Core-collapse SN & more

Core-collapse burst: gadolinium will allow us neutrino tagging, i.e. identify the dominant IBD events:

- Prompt recognition of a SN

- This would outline the v_x elastic scattering: $v_x + e^+ \rightarrow v_x + e^+$ and hence greatly improve the pointing accuracy to the SN

- Measure \overline{v}_{ρ} and v_{ρ} spectra

Pre-burst signal: for $M > 8 M_{\odot}$ during Si burning (last hours or days at most) pair annihilation vs are generated and if close enough (a few kp) could be detectable:

Detector	Target mass	$Min\overline{\nu}_{e}energy$	48-24 hours before collapse	24-0 hours before collapse	3-0 hours before collapse
Super-K	32 kton	5 MeV	0.6	173	158
GADZOOKS!	22.5 kton	3.8 (1.8) MeV	9 (204)	442 (1883)	345 (1130)

A.Odrzywolek et al. AIP Conf.Proc.944,109 (2007)

EGADS & plan schedule

- Step 1: Circulation through the 200 ton tank with pure water (no PMTs) **Done!**
- **Step 2:** Circulation through the 15 ton tank with $Gd_2(SO_4)_{300}$
- Step 3: Circulation though the 200 ton tank with $Gd_2(SO_4)_3$ loaded water **none**
- Step 4: PMT mounting (240 in total)

- Step 5: Full realization of the EGADS project In Progress!

Summary of systematic error ta

	hl	Δ	
Systematic error	2034.3 days(+shift)	2034.3 days(-shift)	1668.8 days
Energy scale	-1.14	+1.16	-1.15/+1.16
Energy resl.	-0.09	+0.14	-0.03/+0.06
B8 spectrum	-0.33	+0.38	-0.34/+0.37
Trigger	-0.02	+0.03	-0.03/+0.02
Vertex shift	+/-	+/- 0.22	
Ovaq	-0.12	+0.11	-0.11/+0.34
Patlik	+0.48	-0.47	-0.45/+0.45
Spallation	+,	+/- 0.2	
Gamma ray	+/-	+/- 0.25	
Click	-0.44	+0.45	-0.45/+0.45
Angular resolution	+0.01	-0.09	-0.01/-0.27
Bckgrd shape	Not done yet(a	+/- 0.01	
Signal extract	+/	+/- 0.7	
Cross section	+/	+/- 0.5	
Total	1.7(1.6573)	1.7(1.6867)	1.7(1.69/1.72)

Energy 3.5-19.5 MeV(kin) Uncorr 1.2(1.1532) Uncorr 1.2(1.1556) Uncorr 1.2 (1.19/1.22)

Gd Sulfate Concentration

EGADS Gd₂(SO₄)₃ + x · H₂O concentration

Concentration Uncertainties

 $z_i(t_{\nu})$: New signal factor can include any time variable, such as zenith angle (day/night effect), distance(eccentricity, seasonal), etc.

Searching for the Day/Night effect(2)

$$\mathcal{L} = e^{-(\sum_{i} B_{i} + S)} \prod_{i=1}^{N_{\text{bins}}} \prod_{\nu=1}^{n_{i}} (\beta_{i}(c_{\nu})B_{i} + \sigma_{i}(c_{\nu} z_{i}(t_{\nu})m_{i}S)$$

$$z_{i}(t_{\nu}) \rightarrow z_{i}(\alpha, t) = \frac{1 + \alpha((1 + a_{i})r_{i}(t)/r_{i}^{\text{ave}} - 1)}{1 + \alpha a_{i}} \times z_{\exp}(t)$$

lpha: Day/Night scaling parameter

$$a_i$$
 : Effective Day/Night asymmetry
 $r_i(t)$: rate in zenith bin of event(MC)
 r_i^{ave} : livetime averaged rate

$$A_{\rm DN} = \frac{r_i^{\rm day} - r_i^{\rm night}}{(r_i^{\rm day} - r_i^{\rm night})/2} = \alpha \times A_{{\rm DN},i}$$

$z_{\exp}(t)$

: take into account eccentricity corrections and the Day/Night MC efficiency difference, does not depends on α

ADN systematics

Large reduction in energy scale error from SK-I to SK-III comes from introduction of z-dependence water transparency parameter into MC.

External event cut had a negligible affect in SK-I and SK-II because no tight fiducial volume cut was applied.

Total errors among SK phases are considered uncorrelated

	SK-I	SK-II	SK-III	SK-IV
Energy scale	0.8%	0.8%	0.2%	0.05%
Energy resolution	0.05%	0.05%	0.05%	0.05%
Background shape	0.6%	0.6%	0.6%	0.6%
External event cut	-	-	0.2%	0.1%
Earth model	0.01%	0.01%	0.01%	0.01%
Total	1.0%	1.0%	0.7%	0.6%