

宇宙線望遠鏡による 極高エネルギー宇宙線の研究

神奈川大学 工学部 多米田裕一郎

TA関連:平成27年度共同利用研究課題

整理 番号	研究課題	研究代表者	合計額 (千円)
C01	TALE実験用地表検出器の開発と性能試験	荻尾彰一	200
C02	TA実験サイトでの超高エネルギー宇宙線観測のための新型検出器の開発	野中敏幸	650
C03	ラジコンヘリコプターによるTA大気蛍光望遠鏡キャリブレーション	多米田裕一郎	250
E25	宇宙線望遠鏡による極高エネルギー宇宙線の研究	佐川宏行	900
E26	TA地表粒子検出器による雷と関連する特異事象観測	奥田剛司	550
E27	小型電子線形加速器による空気シャワーエネルギーの絶対較正の研究	芝田達伸	700
E28	最高エネルギー宇宙線の電波的観測の研究	池田大輔	500
E29	紫外線撮像望遠鏡によるTAサイトでの空気シャワー蛍光光の観測	川崎賀也	750
E30	TA-EUSO64chマルチアノードPMTの較正とCRAYSとの比較	竹田成宏	95
計	9課題		4,595

ご支援ありがとうございます。

Telescope Array Collaboration

R.U. Abbasi^{1,} M. Abe², T. Abu-Zayyad¹, M. Allen¹, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, D.R. Bergman¹, S.A. Blake¹, R. Cady¹, M.J. Chae⁴, B.G. Cheon⁵, J. Chiba⁶, M. Chikawa⁷, W.R. Cho⁸, T. Fujii⁹, M. Fukushima^{9,10}, T. Goto¹¹, W. Hanlon¹, Y. Hayashi¹¹, N. Hayashida¹², K. Hibino¹², K. Honda¹³, D. Ikeda⁹, N. Inoue², T. Ishii¹³, R. Ishimori³, H. Ito¹⁴, D. Ivanov¹, C.C.H. Jui¹, K. Kadota¹⁵, F. Kakimoto³, O. Kalashev¹⁶, K. Kasahara¹⁷, H. Kawai¹⁸, S. Kawakami¹¹, S. Kawana², K. Kawata⁹, E. Kido⁹, H.B. Kim⁵, J.H. Kim¹, J.H. Kim¹⁹, S. Kitamura³, Y. Kitamura³, V. Kuzmin¹⁶, Y.J. Kwon⁸, J. Lan¹, S.I. Lim⁴, J.P. Lundquist¹, K. Machida¹³, K. Martens¹⁰, T. Matsuda²⁰, T. Matsuyama¹¹, J.N. Matthews¹, M. Minamino¹¹, Y. Mukai¹³, I. Myers¹, K. Nagasawa², S. Nagataki¹⁴, T. Nakamura²¹, T. Nonaka⁹, A. Nozato⁷, S. Ogio¹¹, J. Ogura³, M. Ohnishi⁹, H. Ohoka⁹, K. Oki⁹, T. Okuda²², M. Ono²³, A. Oshima²⁴, S. Ozawa¹⁷, I.H. Park²⁵, M.S. Pshirkov^{16,26}, D.C. Rodriguez¹, G. Rubtsov¹⁶, D. Ryu¹⁹, H. Sagawa⁹, N. Sakurai¹¹, L.M. Scott²⁷, P.D. Shah¹, F. Shibata¹³, T. Shibata⁹, H. Shimodaira⁹, B.K. Shin⁵, H.S. Shin⁹, J.D. Smith¹, P. Sokolsky¹, R.W. Springer¹, B.T. Stokes¹, S.R. Stratton^{1,27}, T.A. Stroman¹, T. Suzawa², M. Takamura⁶, M. Takeda⁹, R. Takeishi⁹, A. Taketa²⁸, M. Takita⁹, Y. Tameda¹², H. Tanaka¹¹, K. Tanaka²⁹, M. Tanaka²⁰, S.B. Thomas¹, G.B. Thomson¹, P. Tinyakov^{30,16}, I. Tkachev¹⁶, H. Tokuno³, T. Tomida³¹, S. Troitsky¹⁶, Y. Tsunesada³, K. Tsutsumi³, Y. Uchihori³², S. Udo¹², F. Urban³⁰, G. Vasiloff¹, T. Wong¹, R. Yamane¹¹, H. Yamaoka²⁰, K. Yamazaki²⁸, J. Yang⁴, K. Yashiro⁶, Y. Yoneda¹¹, S. Yoshida¹⁸, H. Yoshii³³, R. Zollinge¹, and Z. Zundel¹

¹University of Utah, ²Saitama University, ³Tokyo Institute of Technology, ⁴Ewha Womans University, ⁵Hanyang University, ⁶Tokyo University of Science, ⁷Kinki University, ⁸Yonsei University, ⁹ICRR University of Tokyo, ¹⁰Kavli IPMU the University of Tokyo, ¹¹Osaka City University, ¹²Kanagawa University, ¹³University of Yamanashi, ¹⁴RIKEN, ¹⁵Tokyo City University, ¹⁶INR of the Russian Academy of Sciences, ¹⁷Waseda University, ¹⁸Chiba University, ¹⁹Ulsan National Institute of Science and Technology, ²⁰KEK, ²¹Kochi University, ²²Ritsumeikan University, ²³Kyushu University, ²⁴Chubu University, ²⁵Sungkyunkwan University, ²⁶Moscow M.V. Lomonosov State University, ²⁷Rutgers University, ²⁸Earthquake Research Institute, University of Tokyo, ²⁹Hiroshima City University, ³⁰Universit'e Libre de Bruxelles, ³¹Shinshu University, ³²National Institute of Radiological Science, ³³Ehime University

宇宙線望遠鏡による極高エネルギー宇宙線の研究

テレスコープアレイ実験

超高エネルギー宇宙線の観測 米国ユタ州ミラード郡南西部砂漠地帯 大気蛍光望遠鏡ステーション 3カ所 北サイトはHiRes-Iから移設(MD, TALE) 地表検出器 507台

敷地面積約 678 km2 2007年11月よりステレオ観測開始 2008年3月よりハイブリッド観測開始

Battery

シンチレータ: 3m² x 1.2cm x 2層 波長シフトファイバ: 1.0mmf 2cm spacing 光電子增倍管: Electrontubes 9124SA x 2

地表検出器 (SD)

2段重ねで設置された望遠鏡

PMTカメラ

PMT

PMT | 1カメラ256本 HAMAMATSU R9508 Hexagonal bialkali photocathode Borosilicate glass window, 8dynodes Q.E. |30% (350nm), Gain | 8.0x10⁴(800V) 視野 | PMT 1.1° x 1.0°, Camera 18° x 15.6°

球面反射鏡

口径 | ~3.3 m (18枚から成る合成鏡) 曲率半径 | 6067 mm

大気蛍光望遠鏡 (FD)

- ・望遠鏡1箇所:FD モノ
- ・望遠鏡2箇所:FD ステレオ
- ・望遠鏡と地表検出器:FD SD ハイブリッド

115 120 125 Bearing (degrees CW from north)

観測されたFDイベント例

105

110

観測された縦方向発達の例

Altitude Angle (degre

10

100

Energy Spectrum (3)

"The hybrid energy spectrum of Telescope Array's Middle Drum Detector and surface array", R. U. Abbasi et al., Astroparticle Physics, Vol. 68 (2015), p. 27-44.

"The Energy Spectrum of Cosmic Rays above 10^{17.2} eV Measured by the Fluorescence Detectors of the Telescope Array Experiment in Seven Years", R.U. Abbasi et al., 査読中, arXiv:1511.07510

"Constraining models of the sources of ultra-high-energy cosmic rays using the energy spectrum measured with the surface detector of the Telescope Array experiment", R.U. Abbasi et al., 査読中

Mass Composition (1)

"Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode", R.U. Abbasi et al., Astroparticle Physics, Volume 64 (2015), Pages 49–62

Hadron Interaction (1)

"Measurement of the proton-air cross section with Telescope Array's Middle Drum detector and surface array in hybrid mode", R.U. Abbasi et al., Phys. Rev. D 92 (2015) 032007

Anisotropy (2)

"A NORTHERN SKY SURVEY FOR POINT-LIKE SOURCES OF EeV NEUTRAL PARTICLES WITH THE TELESCOPE ARRAY EXPERIMENT", R. U. Abbasi et al., The Astrophysical Journal, Volume 804 (2015), Number 2

"Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array", IceCube + Pierre Auger + TA, 査読中

2015年 ICRC

The distribution of shower longitudinal profile widths as measured by Telescope Array in stereo mode	ポスター 発表
Imaging and non-imaging Cherenkov hybrid reconstruction	ポスター 発表
TA Spectrum Summary	口頭 発表
Search for EeV Protons of Galactic Origin	ポスター 発表
Summary of UHECR Composition Measurements by the Telescope Array Experiment	口頭 発表
Calibration of the TA Fluorescence Detectors with Electron Light Source	ポスター 発表
Telescope Array measurement of UHECR composition from stereoscopic fluorescence detection	ポスター 発表
Energy Spectrum and Mass Composition of Ultra-High Energy Cosmic Rays Measured by the hybrid technique in Telescope Array	ポスター 発表
Test for the Radio Detection of the Extensive Air Shower using the Electron Beam in Telescope Array	ポスター 発表
Anisotropy search in the Ultra High Energy Cosmic Ray Spectrum in the Northern Hemisphere using the Telescope Array surface detector	ポスター 発表
Telescope Array Radar (TARA): First Measurement of EAS Radar Cross- section Upper Limit	口頭 発表

Performance and Operational Status of Muon Detectors in the Telescope Array Experiment	ポスター 発表
Telescope Array extension: TA×4	口頭 発表
Measurement of the Proton-Air Cross Section with Telescope Array's Middle Drum Detector and Surface Array in Hybrid Mode	口頭 発表
Study of UHECR Composition Using Telescope Array's Middle Drum Detector and Surface Array in Hybrid Mode	ポスター 発表
Cosmic Ray Shower Profile Track Finding for Telescope Array Fluorescence Detectors	ポスター 発表
Fluoresence Detection of Cosmic Ray Air Showers Between 1016.5 eV and 1018.5 eV with the Telescope Array Low Energy Extension (TALE)	口頭 発表
Search for UHE Photons with the Telescope Array Hybrid Detector	ポスター 発表
Burst Shower Events Observed by the Telescope Array Surface Detector	口頭 発表
Development of the TALE Surface Detector Array	ポスター 発表
Studies on Time Profiles of EAS Particles Observed with the Telescope Array Surface Detectors	ポスター 発表
The NICHE Array: Status and Plans	ポスター 発表

エネルギースペクトル (6本)	質量組成(12本)	到来方向解析(6本)	拡張, R&Dなど(11本)

合計 33本

TA実験 最近の解析結果

- ・エネルギースペクトル
- · 到来方向解析
- ·質量組成解析

エネルギースペクトル

TA/TALE 実験によって 約5桁に渡ってエネルギースペクトルを測定

宇宙線望遠鏡による極高エネルギー宇宙線の研究

エネルギースペクトルの解釈

エネルギースペクトルの異方性

(T. Nonaka et al. ICRC 2015)

到来方向解析

 30
 4

 30
 180

 360
 180

 -30
 -60

- おおぐま座付近にホットスポット
 Abbasi, R.U., et al., ApJL, 790, L21 (2014)
 地表検出器 5年分
- ・地表検出器7年分に更新
- · 2008 May 11 2015 May 11
- · E > 57 EeV : 109 events
 - 5年分, ◆ 更新した2年分
- ・ 到来方向の優位度マップ
 20度オーバーサンプリング
 ・ 20度以内に24イベント
- ·優位度 3.4 σ (5年から変化無し)
- \cdot (R.A, Decl) = (146.7°, 43.2°)
- ・ホットスポットの兆候あり

(K. Kawata et al. ICRC 2015)

近傍の銀河クラスタ

- ・TA実験とAuger実験の到来方向分布
- ・ おおぐま座の方向にホットスポット
- 乙女座銀河団の方向にはエクセス無

(K. Kawata et al. ICRC 2015)

宇宙線望遠鏡による極高エネルギー宇宙線の研究

5 5

×

多米田裕一郎 | 神奈川大工

各測定による<Xmax>の比較

- · QGSJETII-03と各測定を比較
- ・各測定手法は系統誤差内で一致
- ・ 軽い成分からなる質量組成

(J. Belz et al. ICRC 2015)

他実験との比較

- ・Auger実験を再現する組成を仮定
- ・Auger実験と系統誤差内で一致
- ・現在の精度では、混合組成か否かを決定 する事は出来ない

Photon upper limit

地表検出器 7年分シャワーフロントの特徴からPhoton探索候補事象は無し

(G.I. Rubtsov et al. ICRC 2015)

Proton-air cross section

宇宙線望遠鏡による極高エネルギー宇宙線の研究

TA実験:拡張計画

TAx4:最高エネルギー宇宙線の起源解明 TALE:宇宙線の銀河系内から系外遷移の検出

TA x 4

最高エネルギー宇宙線の起源解明 地表検出器 500台(特別推進研究, 2015-2020) 2.08 km 間隔, 2100 km² 大気蛍光望遠鏡ステーション 2箇所 (米国で申請中) HiRes II の移設

現行 TA SD と合わせて約3000 km² TA SD19年分

稼働期間 2017~2020年

TAハイブリッド16年分

稼働期間 2016~2020年

ホットスポットを5σ以上の優位度で確定 ホットスポット構造、点源探索など

TAの低エネルギー拡張実験 宇宙線の銀河系内から銀河系外への遷移 が期待されるエネルギー伝述の短期

が期待されるエネルギー領域の観測 ・大気蛍光望遠鏡

- · 高仰角 (30 57deg.)
- ・2013年9月より稼働

· 地表検出器 (基盤研究(S), 2015-2020)

· 103台, 400m, 600m, 1.2km 間隔

・35台設置済(黒), 16台が稼働(青)

外部評価会議

2015年10月1~3日@ユタ大

外部評価委員

F. Halzen (Chairman)

J. Peoples

J. Goodman

T. Terasawa

Y. Itow

E.S. Seo

M.I. Panasyuk

10/1 Intro. Spectrum Composition Lunch Anisotropy γ, ν limit σ (p-air) Radio detection μ studies Physics summary Dinner

10/2Answers to the EAB question TALE SD TAx4 SD TAx4 FD Plan TAx4 Discussion Lunch Committee deliberations Meeting / VP for research Dinner

10/3 Leave for Delta Cosmic ray center BRM FD SD Lunch MD FD Dinner

TA実験 関連実験、R&D

宇宙線望遠鏡による極高エネルギー宇宙線の研究

多米田裕一郎 | 神奈川大工

ELS : Electron Light Source

・TA FD キャリブレーション装置

- ・電子ビームを空中射出
- ・空気シャワーを生成しFDで蛍光を観測
- ・2014年 3,10,11月のデータを解析
- · ELSの系統誤差: 7.9%
- ・MCとデータを比較
 - ・MCでは3種類の大気蛍光モデルを考慮
 - · Flash, AirFlyモデルはよく一致

· Kakimoto(TA)モデルは不一致

		大気状態			Data/MC	
Run	T[°C]	p[hPa]	H[%]	Flash	Kakimoto	AirFly
1	7.3	855.1	29.2	0.998	1.245	0.996
2	6.8	861.8	16.8	0.996	1.245	0.979
3	0.0	865.1	47.9	1.004	1.264	1.011
4	0.4	864.2	47.5	1.010	1.248	1.000
5	-1.5	864.6	63.1	1.025	1.275	1.026
6	-5.0	864.3	71.3	1.017	1.267	1.014
		平均		1.008	1.257	1.004

蛍光モデルの比較

Q in ELS data	3.3%
Soft photon background	1.5%
Cherenkov photon	0.4%
FADC of simulation	4.0%
P,T and h @ BRM	0.5%
Σ FADC in ELS MC	5.5%
Telescope Parameters	1.6%
Total	7.9%

(B.K. Shin et al. ICRC 2015)

FDで観測されたOpt-copter

Elevation

Azimuth

(M. Hayashi et al. ICRC 2015)

ルチョプターを用いたFD校正装置
 - 様安定LED光源 (UV LED)
 高精度位置測定
 GPS試験:位置精度 ±5cm
 2015年3月試験観測@TAサイト
 MCとデータがよく一致

12面体上に配置されたLEDと拡散球

宇宙線望遠鏡による極高エネルギー宇宙線の研究

光源を搭載したマルチコプター

雲モニタリング

CCDカメラ(魚眼) BR, LR, CLFに設置 毎分撮像

電波的観測の研究

ELSを用いた電波エコー測定

- ELSから距離140m地点に送信器、受信器を設置して試験
- ビームに同期した信号を観測
- 電波エコーではない
- 電子ビーム発生時に起きる急激な電場の変化由来
 Sudden Birth 現象
- 多波長測定結果とモデルによる予測は良くあっている

TA実験との宇宙線同時観測による電波エコー法の試験

- TA実験中央レーザー射出サイト(CLF)にアンテナを2基設置
- TASDトリガーでデータを記録
- 送信電波を水平から垂直偏波に変えた試験
- ・ 送信電波停止期間は電波エコー以外の現象
- Geo-thynchrotron, Sudden birth
- 観測は継続中

宇宙線望遠鏡による極高エネルギー宇宙線の研究

多米田裕一郎 | 神奈川大工

TA実験とAuger実験の不一致の検証

TAとAugerの共同実験

エネルギースケール、組成、検出器の違いの理解 Auger実験の水チェレンコフ検出器を設置 "Auger North" 2014/10より稼動 "Auger South" 2015/6 設置 TA SD と同期したイベントの取得成功 今後 Auger検出器を増設予定 イベントレベルでの比較が目標

TAミューオン検出器

MCとデータの不一致の検証

TA実験におけるFDとSDのエネルギー: $E_{\rm SD} = 1.27 \times E_{\rm FD}$

Auger実験におけるミューオン過剰

NICHE

宇宙線望遠鏡による極高エネルギー宇宙線の研究

まとめ

エネルギースペクトル

TALE実験を含め5桁のエネルギー領域で測定

陽子組成と無矛盾なスペクトル

異方性もある?

到来方向解析

ホットスポットの兆候あり(データ更新しても変わらず)

質量組成

陽子などの軽い組成

Auger実験とは系統誤差の範囲内で一致

拡張計画

TA x 4:より高統計での観測で、ホットスポットなどを確定したい

TALE:銀河系内から銀河系外への遷移の観測が期待

その他様々なR&Dや、Auger実験との共同研究などが行なわれている