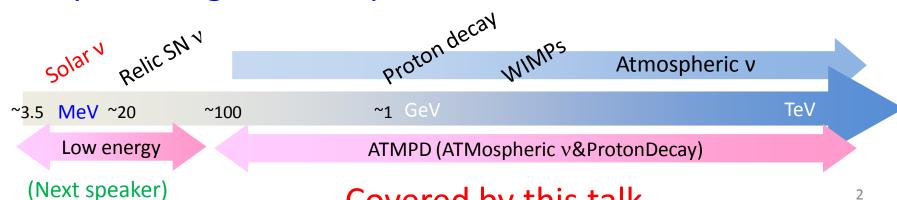
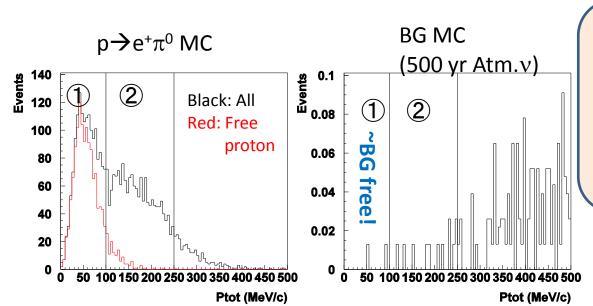

スーパーカミオカンデにおける 最新結果 (大気ニュートリノ、核子崩壊探索等)


東京大学宇宙線研究所 神岡宇宙素粒子研究施設 三浦 真 2015/12/19 共同利用研究成果発表会

1. Introduction: Super-Kamiokande

- 50kton pure water Cherenkov detector
- 1km (2.7km w.e) underground in Kamioka
- 11129 50cm PMTs in Inner Detector
- 1885 20cm PMTs in Outer Detector

Physics targets of Super-Kamiokande


2. Publications in this year (ATMPD)

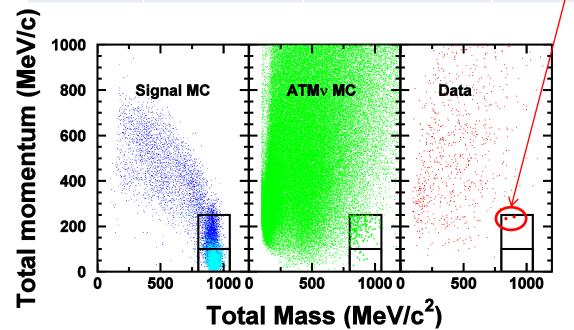
- Test of Lorentz invariance with atmospheric neutrinos: Phys. Rev. D 91, 052003 (2015)
- Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande: Phys. Rev. D91, 052019 (2015)
- Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande: Phys. Rev. Lett. 114, 141301 (2015)
- Search for n-nbar oscillation in Super-Kamiokande: Phys. Rev. D91, 072006 (2015)
- Search for dinucleon decay into pions at Super-Kamiokande: Phys. Rev. D91, 072009 (2015)
- Search for Nucleon and DiNucleon Decays with an Invisible Particle and a Charged Lepton in the Final State at the Super-Kamiokande Experiment: Phys. Rev. Lett. 115, 121803 (2015)
 - 2 neutrino oscillation papers,
 - 1 astrophysical paper,
 - 3 nucleon decay papers.

3. Nucleon decay analysis

- Update $p \rightarrow e^+\pi^0$, $\mu^+\pi^0$, and νK^+ by data until March, 2015 (total exposure: 306 kt•year).
- Neutron tagging is applied for SK4 analysis. Backgrounds are reduced by almost half (reported in the previous year).
- In p \rightarrow e⁺ π^0 , $\mu^+\pi^0$, signal region is divided into two parts;
 - 1 Ptot < 100 MeV/c: Free proton dominant, almost BG free!
 - 2 100<Ptot<250 MeV/c: Bound proton dominant.

•Expected BG: 0.07 events Obs.in(1) \geq 2 \rightarrow 3 σ

BG increases very slowly:0.003evts/year



Keep discovery potential!

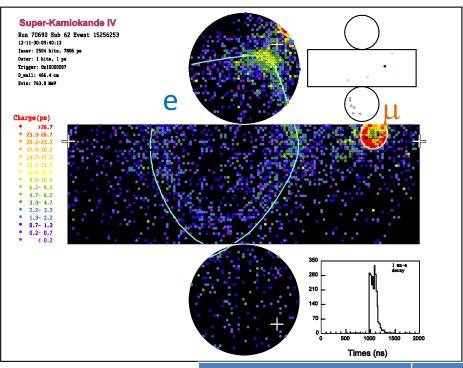
Results with 306kt year exposure

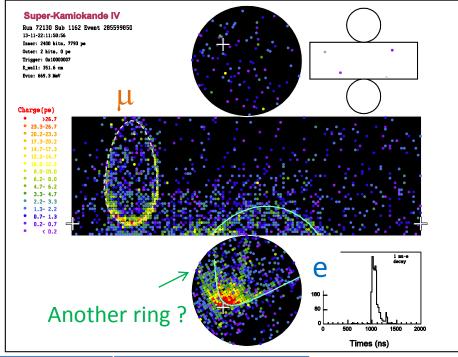
p → e⁺π ⁰	0~100MeV/c	100~250MeV/c	Total
Observed	0	0	0
BKG	0.07	0.54	0.61

$p \rightarrow \mu^+ \pi^0$	0~100MeV/c	100~250MeV/c	Total
Observed	0	2)2	2
BKG	0.05	0.82 (SK4:0.23)	0.87

2 events remained in $p \rightarrow \mu \pi^0$!

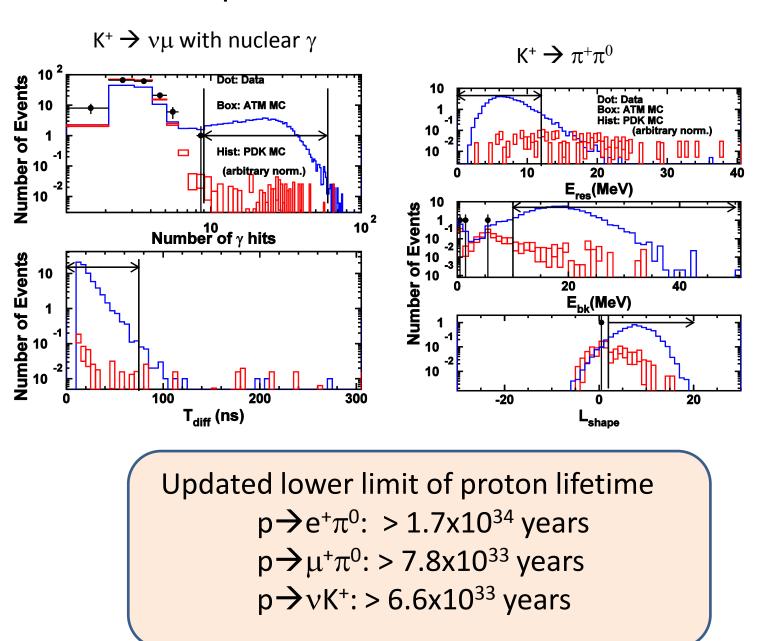
Both events are

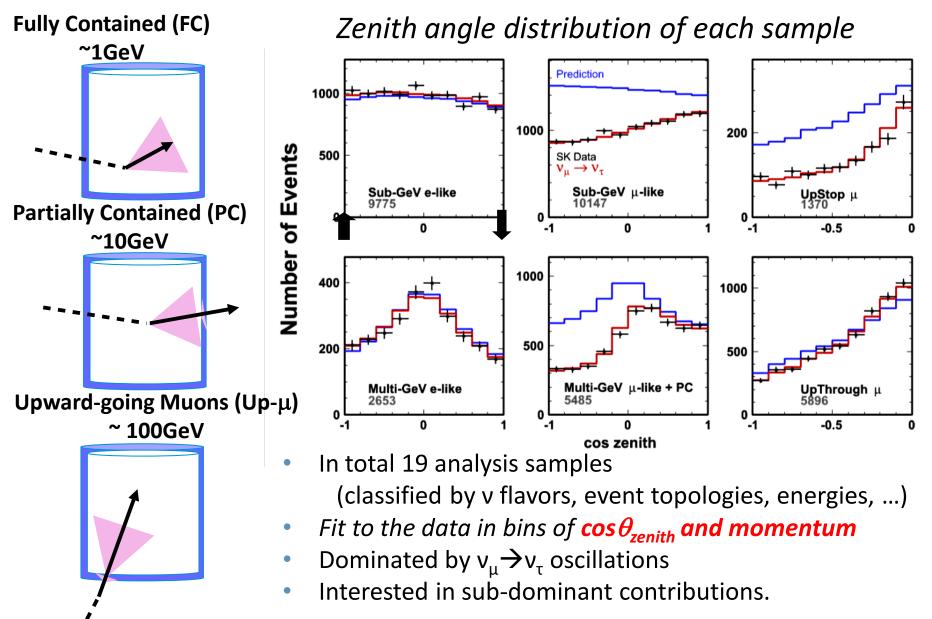

- in SK4 period,
- ➤ near by boarder (P_{tot}~ 250 MeV/c),
- \triangleright 2 ring (e-like+ μ -like)


Probability assuming BG;

Poisson(≥2,0.82)=20% (SK4 only: 2.3 %)

Observed events


1st event 2nd event



	1 st event	2 nd event
Mtot (MeV/c²)	902.5	832.4
Ptot (MeV/c)	248.0	237.9
Pe (MeV/c)	374.9	460.5
Pμ(MeV/c)	551.1	391.3
Opening ang (deg)	157.9	148.9

$p \rightarrow vK^+$: No candidates

4. Neutrino oscillation analysis

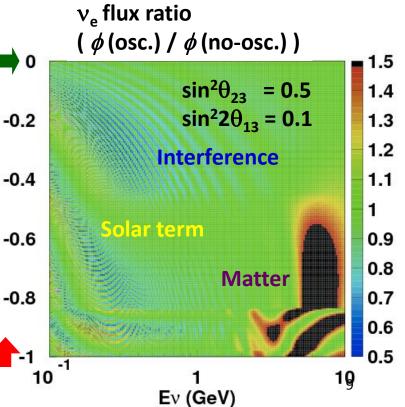
Neutrino oscillation studies using atmospheric v

High statistics atmospheric neutrino data : FC ~48k ev (98': 4353ev) ~ Possibility in observing small distortion in v_e

COS

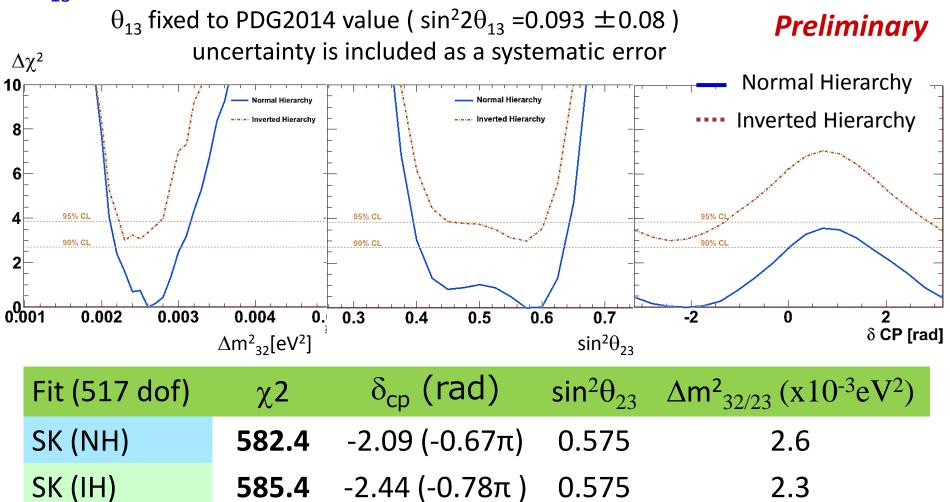
- Matter effect \sim from mass hierarchy Possible v_e enhancement in several GeV passed through the earth core
- Solar term \sim from θ_{23} octant degeneracy

Possible v_e enhancement


in sub-GeV

Interference

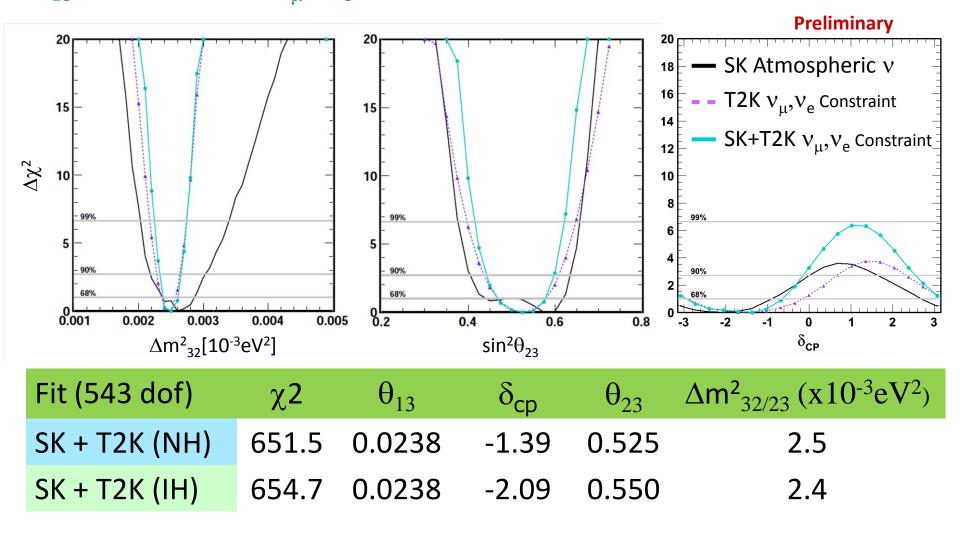
CP phase could be studied.


Difference in # of electron events:

$$\Delta_{\theta} \equiv \frac{N_{\theta}}{N_{\theta}^{0}} \cong \Delta_{1}(\theta_{13})$$
 Matter effect
$$+\Delta_{2}(\Delta m_{12}^{2})$$
 Solar term
$$+\Delta_{3}(\theta_{13}, \Delta m_{12}^{2}, \underline{\delta})$$
 Interference

Neutrino oscillation studies using atmospheric v

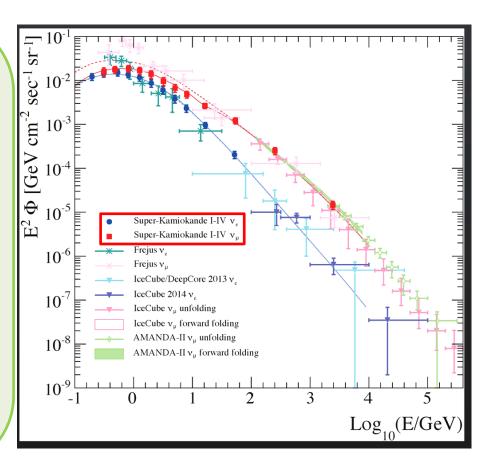
θ_{13} Fixed Analysis (NH+IH) SK Only



Offsets in these curves show the absolute χ^2 diff. in the hierarchies.

Normal hierarchy is favored at $\chi^2_{NH} - \chi^2_{IH} = -3.0$ (not significant still.)

Neutrino oscillation studies using atmospheric v


 θ_{13} Fixed SK + T2K ν_{μ} , ν_{e} (External Constraint) Normal Hierarchy

 $\chi^2_{\rm NH} - \chi^2_{\rm IH} =$ -3.2 (-3.0 SK only) $\sin \delta_{\rm cp} = 0$ is still allowed at (at least) 90% C.L. for both hierarchies.

5. Atmospheric v flux measurement

- Our measurement can be translated to v flux via detector response matrix estimated by MC.
- Our data provide improved precision, extending up to 100 GeV for v_e and 10 TeV for v_u .
- First data below 320 MeV.
- Overlap with km³ detectors.
- Consistent with HKKM11, Bartol, and Fluka Models.

Paper has been submitted (http://arxiv.org/abs/1510.08127).

6. Summary

- 6 papers related to ATMPD have been published in 2015.
- Updated major proton decay modes.
 - \geq 2 box analysis introduced to p \rightarrow e π^0 , $\mu\pi^0$ to keep high sensitivity and discovery potential even for longer exposure.
 - \rightarrow p \rightarrow e π^0 : 0 event observed, > 1.7x10³⁴ years
 - $\rightarrow p \rightarrow \mu \pi^0$: 2 events observed, > 7.8x10³³ years
 - \triangleright p \rightarrow vK+: 0 event observed, > 6.6x10³³ years
- Atmospheric v data favors Normal hierarchy slightly $(\chi^2_{NH} \chi^2_{IH} = -3.0, SK \text{ only}).$
- SK provides precise data points of ν flux. Consistent with existing models.