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Introduction

To confirm vu <> vt oscillations with Super-K (see previous talk:
= Rule out disappearence into Vo v
= Oscillatory signature v
= Appearance of vt events v

At the same time several other experiments observed oscillations, in various
energy regimes and channels

= K2K, T2K, MINOS

= SNO, Super-K (solar), Borexino

= KamLAND, Daya Bay, RENO, Double Chooz

We now know that all mixing angles are non-zero
« Lots left for atmospheric neutrinos:
Standard Oscillations This Talk
= Mass Hieararchy, Scp, 623 octant
Exotic oscillations
= Search for AmS ~ eV? scale sterile neutrinos

= Search for Lorentz invariance violation
The near and far future

-+ Matter effects are key



Super-Kamiokande: Introduction

Four Run Periods:
SK-1 (1996-2001) SK-1I (2003-2005)
SK-111 (2005-2008) SK-IV (2008-Present)

' 22.5 kton fiducial volume

™ Optically separated into
* Inner Detector 11,146 20” PMTs
= Quter Detector 1885 8” PMTs

™ No net electric or magnetic fields
™ Neutrino direction and energy are
unknown
= Hard to reconstruct directly
“ Excellent PID between showering (e-like)
and non-showering (m-like)
= ~1% MISID at 1 GeV

= As of Today: 4972 days of data
= 51,000 Events
® Multipurpose machine
= Solar and Supernova Neutrinos
= Atmospheric Neutrinos (this talk)
= Nucleon Decay
= Far detector for T2K




The State of the Art



Up Until 2012
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Super-K Atmospheric v AnaIyS|s Samples
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In total 19 analysis samples
= 51,000 Events ( x10 more than in 1998 )
Dominated by vu—>vT oscillations
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We are now interested in subdominant contributions to this
picture : three-flavor effects, Sterile Neutrinos, LIV, etc.



Atmospheric v Flux Measurement
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Measurement of ve (E < 100 GeV) and vu (E< 1 TeV) fluxes
= Good agreement with current models (Honda et. al 2011 shown)
Dipole asymmetry now confirmed at seen at 6.0c (u-like) and 8.06 (e-like)



Atmospheric v Flux Measurement

preliminary
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Measurement of ve (E < 100 GeV) and vu (E< 1 TeV) fluxes
= Good agreement with current models (Honda et. al 2011 shown)
Dipole asymmetry now confirmed at seen at 6.0c (u-like) and 8.06 (e-like)



Searching for Three-Flavor Effects: Oscillation probabilities
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Key Points
= No Vu -V Appearance above ~20 GeV,

- Resonant oscillations between 2-10 GeV (for v or v depending upon MH)
= No oscillations above 200 GeV

= No oscillations from downward-going neutrinos above ~5 GeV

= Expect effects in most analysis samples, largest in upward-going v

= Sensitive to most of the MNS mixing parameters



Oscillation Effects on Analysis Subsamples
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* Preference for matter over vacuum oscillations at ~1 ¢ (82% C.L.)



Single-Ring E-like neutrino-like and antineutrino-like
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Comparison with Official Results from T2K and MINOS
Preliminary
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Though consistent with long-baseline measurements, atmospheric

neutrinos allow more of the mixing parameter space
SK's sensitivity can be improved by incorporating constraints from these

measurements



0.003
00029} T2Kv, External Model

0.0028 .
Restricting the allowed values of Am? and 0.0027- T2Kcofficial

sin2923 available to the atmospheric neutrino 2}
0.0025—

fit can help improve sensitivity to the mass 0.0024]

Introduction of External Constraint

hierarchy ::ZZ:
= Include these constraints as external data 0_002,;

sets in the SK fit R T G
Goal: Fit the T2K Vuand v data sets with SK 6r

- Hierarchy Sensitivity NH True

= Same detector, generator and reconstruction: 5[

systematic error correlations incorporated

easily
= Build external models by reweighting
atmospheric neutrino MC to T2K beam
= Fit is based on publicly available T2K
information and results

3 SK+ T2Kvu, v

ol

Ay Wrong Hierarchy Rejection

= Simulate T2K using SK tools

= (not a joint result of the T2K and SK A
collaborations ) sin’ 6,
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Preliminary

Thetal3 Fixed SK + T2K vu, v Model, Normal Hierarchy

201 — 20— 20 ———————— | |
l | SK Atm '
- : ! SK+T2K VvV ,V model
15 | 15 - 15 hoe —
- : : T2K VM,Ve model
N; 10 - 10:_ N 10:_ ]
of 14 14 j
I 90% _/-—‘\“L \ A
68% I:‘ \' //‘\I
0l o ‘ T R e
0.001 0.002 0.003 0.004 0005 92 e % > 4 6
| A m2, | MeV? Bep
Fit (585 dof 2 K
it ( ) X 0, 5 0, Am_ (x107)
SK + T2K (NH) 651.5 0.0238 4.89 0.525 2.5
SK + T2K (IH) 654.7 0.0238 4.19 0.550 2.4

2 2 _
XNH_X|H_-3'2

Conservation (sinSCp =0 ) allowed at (at least) 90% C.L. for both hierarchies
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Exotic Types of Oscillation

B Because the standard PMNs oscillation parameters are now known very well, its possible
to use atmospheric neutrinos to search for other oscillations with more exotic origins



Sterile Neutrino Oscillations in Atmospheric Neutrinos

Sterile Neutrino searches at SK are
independent of the sterile Am? and the
number sterile neutrinos

= 3+1 and 3+N models have the same
signatures in atmospheric neutrinos

« For Am52~ 1 eV oscillations appear fast:

<sin® Am*L/E > ~0.5
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Sterile Oscillations Results  PRD.91.052019 (2015)
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= Turning off sterile matter effects while preserving standard three-flavor oscillations
provides a pure measurement of | Uu4 |2

W Using sterile matter effects, but decoupling v oscillations provides a joint measurement
of | Uu4 |? and | U, |? , with a slightly biased estimate of the former

® Using SK-1+11+11+1V data ( 4438 days)
| Uu4 |?<0.041at 90% C.L. | UT4 |?<0.18 at 90% C.L.
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Tests of Lorentz Invariance PV, -V, )
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Analysis using the Standard Model Extension (SME)
= Not a perturbative calculation
= Effects computed using full solutions of the
Hamiltonian
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Constraints on Lorentz Invariance Violating Oscillations: 90% C.L.
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Perform separate fits on both hierarchy assumptions for each coefficient and each sector :
eu, et, Ut

No indication of Lorentz invariance violation
* Limits placed on the real and imaginary parts of 6 parameters < O(10%)
* New limits on Lt sector, improvements by 3 to 7 orders of magnitude over existing limits
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Future of These Measurements

B Several analysis improvements are planned to increase Super-K's sensitivity to the open
guestions in neutrino physics

B Many of these analyses are predominantly statistics limited, so accumulating more data is
essential



Looking Towards the Future
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Expanded fiducial volume
PID Improvement with advanced reconstruction methods

= Reject CCvu and NC backgrounds in e-like samples

Constrain T background with NN

= Main background to hierarchy search

= Meausurement of cross section normalization
n-H / n-Gd neutron tagging

= Improved energy reconstruction

= NC background reduction

= Neutrino / Antineutrino separation



LOOking Towards the Future ~ constructed Energy Correction
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Expanded fiducial volume
PID Improvement with advanced reconstruction methods

= Reject CCvu and NC backgrounds in e-like samples

Constrain T background with NN -

- Main background to hierarchy search Efficiency 20.5%
= Meausurement of cross section normalization
n-H / n-Gd neutron tagging Background / Event 0.018

= Improved energy reconstruction

= NC background reduction

. 3 . . ....More Data is key!
= Neutrino / Antineutrino separation Y




~uture Hierarchy Sensitivity

Upcoming Analysis Improvements
Hierarchy Sensitivity At End of JFY2017
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PID Improvement
= Better Multi-GeV/-Ring e-like
identification

Constrain T background with NN
= Main background to hierarchy search
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n-H / n-Gd neutron tagging
= Improved energy reconstruction, NC
background reduction
= Neutrino / Antineutrino separation
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Hyper-Kamiokande
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Hyper-Kamiokande
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Hyper--Kamiokande: Introduction
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Staged design:
186 kton 6 years,372 kton thereafter
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W 186 (x2) kton fiducial volume (2 x 8.3 x SK)

™ Optically separated into

* |nner Detector 40,000 (x2) PMTs (2x4xSK)
= 40% Coverage (same as SK)

= Quter Detector 12,000 (x2) PMTs (2x6xSK)

“ ID Photosensors will be high QE
= Single photon detection : 24% (2 x SK))

“ Receive 1.3 MW beam from J-PARC
= Accumulate 2.7 x 10%* POT (3 X T2K)

“ Multipurpose machine

= All of the physics of Super-K and T2K
= Plus more! Geophysics

= Accessible only with very large detectors
™ Not just a larger version of Super-K

= Improved performance: photosensors, tank

materials
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Comparison to Current Super-K Exposure

Fiducial Vol. 186 kton 22.5 kton
Eff. Area 6,430 m? 1500 m?
Protons 6.0 x 10* 7.5 x10%
Neutrons 5.0 x 10* 6.0 x 10*
Fully Contained p-/e-like 246,600 41,000
Partially Contained p-like 21,300 3,100
Upward-Going u 24,300 7,400

Hyper-K sensitivity studies are based on Super-K simulation and
reconstruction

= Analyses exposures have been adjusted to account for difference in fiducial
volume and effective area between Hyper-K and Super-K
Event rates compare 10 years of Hyper-K and 12.8 years of SK



Hyper-K Sensitivity 10 Years, Staging Scenario

Hyper-K 2.6 Mton year, Staged 13, Uncertainty  Hyper-K 2.6 Mton year, Staged
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= Expect better than ~30 sensitivity to the mass hierarchy using atmospheric

neutrinos alone

W 30 Octant determination possible if |6 - 45°| > 4°
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Combination of Beam and Atmospheric

Neutrinos

B Beam neutrinos provide tight constraints on mixing parameters that weaken the
sensitivity of the (statistics limited) atmospheric neutrino sample to the mass hierarchy for

instance

B Sensitivity of the two samples to the CP parameter is largely complementary, such that
combined measurement yields better precision.

0.04

Normal mass hierarchy Normal mass hierarchy
L x10?

2
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Combination with Beam Neutrinos : Hierarchy and Octant

18, Uncertainty 15, Uncertainty
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™ For the optimal (worst) set of parameters the combined measurement can determine the
mass hierarchy with ~1.5 (4.0) years of data

® Here the beam exposure after 10 years is assumed to be 2.7x10* POT , divided in a 1:3
ratio between neutrinos and antineutrinos

= POT have been scaled evenly for shorter run periods
m 30 Octant determination possible if |€)23 - 45°| > 3°



Combination with Beam Neutrinos : ocp
N Atmv

/N
- \

Sensitivity to F)Cp is largely complimentary between the beam and atmospheric

neutrino samples
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Constraint on Scp improves with their combination

Atmospheric v sensitivity is limited by flux and cross section uncertainties




Other Atmospheric Neutrino Physics

B Just a sampling

B Other studies exist in the backups
+ Sterile neutrino oscillation
+ Lorentz Invariance violating oscillations
+ Indirect dark matter searches

33



Oscillation-induced v measurements

Zenith Distribution

Events

H%i

Incorporate t NN information into
oscillation analysis

200
per/ 100 ktonyr. = Hyper-K LAr o
Signal CC vt 40.2 28.5
Background 448.7 44.8 100
S AB, 10 years 9.6 8.5 -

« HK Numbers are upward-going event rate
= LAr numbers based on PRD82, 093012 oL

2
fr

SK-1+11+111 : 2806 days
Phys Rev. Lett. 110, 181802 (2013)

L]

N
1030604020 020406031

cos(®)

Fitted Excess

Atm v BKG MC 1

After 10 years Hyper-K will have O(1,000) vt events that can be used to study

= CC V_Cross section, leptonic universality, etc.

Fit for CC V_Cross section normalizaton

After 5.6 Mton years Hyper-K constraint on this parameter would be about 7%



Oscillation-induced v measurements

10
Incorporate t NN information into
oscillation analysis gl
per/ 100 ktonyr. | Hyper-K LAr : :_gw"
Signal CC vt 40.2 28.5 "_:e I
Background 448.7 44.8 4 \ /
S B, 10 years 9.6 8.5 o
2 —_
« HK Numbers are upward-going event rate 68 \ /
= LAr numbers based on PRD82, 093012 \ /

) | | | | | | | |
0e 1 1.2

¢ CC v_ Normalization

After 10 years Hyper-K will have O(1,000) vt events that can be used to study
= CC V_Cross section, leptonic universality, etc.

Fit for CC V_Cross section normalizaton

After 5.6 Mton years Hyper-K constraint on this parameter would be about 7%



Geophysics: Chemical composition of Earth’s Outer Core 36
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Density profile of the Earth is well known from seismology

Outer core is thoughts to be made of Fe+Ni and some other light element (unknown)
Chemical composition of the Earth’s core (Z/A ratio) is essential to understanding the
formation of the Earth and its magnetic field
Hyper-K can begin making measurements in this as yet unopened field
Any measurement is of interest to the geophysics community , even if errors are large
With a 10 Mton year exposure Hyper-K can exclude a lead- and water-based cores
Technique is complementary to that of large neutrino telescopes




Geophysics: Chemical composition of Earth’s Outer Core

Sensitivity to Outer Core Chemical Composition, 10 Mton yr
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Density profile of the Earth is well known from seismology

Outer core is thoughts to be made of Fe+Ni and some other light element (unknown)
Chemical composition of the Earth’s core (Z/A ratio) is essential to understanding the
formation of the Earth and its magnetic field
Hyper-K can begin making measurements in this as yet unopened field
Any measurement is of interest to the geophysics community , even if errors are large
With a 10 Mton year exposure Hyper-K can exclude a lead- and water-based cores
Technique is complementary to that of large neutrino telescopes




Proton Decay Discovery Potential at Hyper-K: 3¢ 38
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If proton lifetime is near the current Super-K limit of 1.7x10* years Hyper-K will
observe a positive signal at 8.90 in 10 years
3 ¢ discovery is possible after 20 years if T < 10% yr - Only possible with Hyper-K!



Proton Decay Discovery Potential at Hyper-K:
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___________________________________________________________________________

Recently Super-K has found two candidates in the mode

* p— 1L'w’ (BG =0.87)
Excellent motivation
= Reduce backgrounds further!
= Build a larger detector... like Hyper-K!




Summary ¥

Atmospheric neutrino physics at Super-K has come a long way since the oscillation
discovery in 1998
* Now exploring sub-dominant three-flavor oscillations with weak hints for the
normal hierarchy and second octant
= Stringent limits on sterile neutrino and Lorentz invariance violating oscillations
However, statistics remain a limiting factor for Super-K

Hyper-K is expected to be more expansive and precise
= 30+ mass hierarchy and octant determination,within a few years of operation
= New studies of v physics, Earth core's chemical composition

Nucleon decay physics potential is equally promising
* Sensitivity top — e’ at t/B > 10” years (only with Hyper-K!)
* Sensitivity to p — VK" at ©/B > 10** years and beyond
* Order of magnitude increase in sensitivity in many other modes

The role of atmospheric neutrinos in our understanding of the natural world will
continue to be significant well into the future
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Hyper-Kamiokande Proto-Collaboration

(1st) http/indico.pmu,jp/indico/conferenceTimeTable py?confld=7#all.detailed
(2nd) http:/indicoipmujp/indico/conferenceTimeTable py?confld=10#all.detailed
(3rd) http/indico.ipmu jp/indico/conferenceTimeTable . py?confld=23#all.detailed
(4th) http/indico.pmu jp/indico/conferenceTimeTable py?confld=29#all.detailed
(5th) http/indico.pmu jp/indico/conferenceTimeTable py?confld=34#all.detailed
(6th) http:/findico.ipmu jp/indico/conferenceTimeTable py?confld=52#all.detailed

42

A1 p roto-collaboratio

Still open to
new collaborators!

(1st ProtoCollab) hitp:/findico.ipmujp/indico/conferenceTimeTable py?confld=67#all.detailed

i ] KIK>

23 countries, 261 people (0ct.2015)
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