Telescope Array Group

Toshiyuki Nonaka High energy cosmic ray research division Institute for Cosmic Ray Research ICRR Young Researchers

Cosmic Ray Energy Spectrum

Hybrid observation

Fluorescence light from air shower (emitted light all direction).

- Fluorescence Telescopes (FD)
 - Observe shower track from side
 - Observe shower development
- Surface detector (SD)
 - Observe particles density and timing at ground level.

Xmax, chemical composition

The depth at maximum development(X_max) of shower depends on the type of primary cosmic rays.

Present observation site

West of Delta City Utah state , USA N39° W112° , ~1400 asl

Ongoing experiments

Telescope Array(TA)

- Fluorescence telescope (FD) x3site
- Surface detector (SD) x507, 1.2km grid (670km²)

(FD)

Telescope Array Fluorecence Detector

Telescope Array Fluorecence Detector

Telescope Array Surface Detector

10¹⁹eV Proton shower

Telescope Array Surface Detector

O An event hit map are shown SD Time Fit O Geometrical and LDF reconstruction fit is shown for this event. Hit timing Observed hit Time [4µS] 7.5 map 21 6.5 ArrayEdge 20 Distance along shower axis on the ground, [1200m] -8.5 SD LDF Fit Charge Density, [VEM/m²] 15 7.5 14 1₣ LDF 13 Perpendicular distance from shower axis, [1200m] East [1200m] →

Hit timing : \rightarrow Arrival direction Lateral distribution of energy deposit $\rightarrow \frac{\text{Energy estimator "S(800)"}}{(\text{Energy deposit at 800m})}$

Telescope Array Surface Detector

Energy determination at SD

- O Look up table generated by "MC"
- O FD gives calorimetric energy.
- O SD energy obtained by "MC" is calibrated with FD energy obtained at hybrid events.

TA operation

- 2008/05~SD+FD Hybrid observation
- 12 years of data.

Number of Trigger

TA Low Energy extension (TALE)

10 new telescopes to look higher in the sky (31-59°) to see shower development to much lower energies Infill surface detector array of more
 densely packed surface detectors (lower energy threshold)

2020/11/13

TALE telescopes

Telescopes for high elevation angle (31-59°)

- 2013- Telescope operation
- 2017-80 SDs deployed and hybrid observation started.
 - Upgraded DAQ system from original TA

TALEハイブリッド実験の基本性能

エネルギーしきい値 logE=16.0 イベントレート ~5,000 事象/年 \leftarrow 50,000 事象/年 (SD単体) $\Delta \theta = 1.0^{\circ} \leftarrow 5.3^{\circ}$ (FD単眼) $\Delta Xmax = 20 g/cm^{2} \leftarrow 60g/cm^{2}$ (FD単眼)

TALE event display

ICRR Young Researchers Workshop

TAx4

Observation for higher energy part $E>10^{19.5}$

Red marker : Deployed at 2019/03

- 2 divided SD array
- North 130 SDs 2.08 km grid
- South 127 SDs 2.08 km grid

More robust detector than TA

TAx4 Experiment

- Array grid is 2.0km.
- Trigger efficiency ~95% at 57 EeV
- Energy resolution < -29% + 22%
- Angular resolution < 2.2 deg
- Study of reconstruction have been updated

UHEAP 2016 @ University of Chicago

TAx4 SD

Stable operation started in the fall of 2019 already 1 yr of data.

TAx4 FD

under

construction

Hybrid event

Energy spectrum

- Combine TA spectrum (11 years)
 - Statistics is dominated by SD data while combining.

Comparison with other experiment

Fig. 3. A schematic view of a surface detector station in the field, showing its main

2020/11/13

Composition study using FD

Composition study using SD

Composition study using BDT multivariate classifier based on particles arrival timing and lateral distribution.

FIG. 6. Hadronic model dependency error of the method as a function of energy, based on a comparison with QGSJETII-04 hadronic interaction model.

FIG. 8. Average atomic mass $\langle \ln A \rangle$ in comparison with the Pierre Auger Observatory X^{μ}_{MAX} and risetime asymmetry results [18,52]; statistical error is shown with error bars, systematic error is shown with brackets.

Phys. Rev. D 99, 022002 (2019)

The technique extends energy range for composition study. Also it can be adopted to anisotropy study (by selecting proton like events . etc)

Anisotropy

2MRS catalogue D<75Mpc Blue~Red corresponds to 0~75Mpc

- Matter distribution within 100Mpc differ between direction of SGP and other.
 - Spectrum modulation differ due to different matter distribution.
- The attenuation depends on composition.
 - Anisotropy in energy spectrum
 - Anisotropy in composition

JPS meeting 2015 @Osaka City Univ (Japan) translated to English

E>10^{19.7} Anisotropy

P-air Inelastic Cross section

Muon excess

Ongoing analysis and development

Anisotropy study w magnetic field

R.Higuchi, JPS meeting Sep. 2020

Flux pattern of cosmic ray is generated using galactic magnetic field models. Then study compatibility with flux pattern of observed data.

Anisotropy in composition

- Proton-like events were selected with *ξ* parameter used for composition study.(Phys. Rev. D 99, 022002 (2019))
- GMF is considered
- Left panel is selected events. Right panel is significance of excess from expectation of uniform distribution.

Excesses are observed in the hotspot and Galactic plane area.

Update of hybrid event analysis

- Extend hybrid study
- More statistics for composition study.
- Cross check of each telescopes.
- Improvements have been attempted, including consideration of meteorological conditions

