Precise high-energy gamma-ray observations in GRAINE, latest results on 2018 balloon-borne experiment and next/future experiments Satoru Takahashi (Kobe Univ.) for GRAINE collaboration Aichi U of Education, Gifu U, ISAS/JAXA, Kobe U, Nagoya U, Okayama U of Science PI: Shigeki Aoki (Kobe Univ.)

GRAINE 2018, JAXA Scientific balloon @ BLS Alice Springs Australia, 6:30AM 26th April (ACST)

All-sky map by Fermi Gamma-ray Space Telescope using nine years of data collected from 2008 to 2017

Image credit: NASA/DOE/Fermi LAT Collaboration

5064 sources (4FGL)

Nuclear emulsion

 γ -rav

Microscopic view 10 μm

Intrinsic position accuracy of ~50nm

Precisely tracking beginning of e-pairs suppressed multiple Coulomb scattering → High angular resolution

 \rightarrow Polarization sensitive

e+/-

+Large scalability+Automatic large-area-analysis technique+Timestamping technique

Novel γ -ray telescope

GRAINE 2011

First balloon-borne emulsion γ -ray telescope experiment

ක ම p 43

42.6

42.4

TARF

JAXA scientific ballooning Taiki Aerospace Research Field (Hokkaido, Japan)

 42.2
 June 8th, 2011

 4.3 hour flight duration

 42
 (1.6 hours @34.7km)

 143 143.2143.4143.6143.8 144 144.2144.4144.6144.8 14

 Longitude [deg]

First balloon-borne experiment Feasibility demonstration

GRAINE 2011 Flight data analysis

3780cm² aperture (x30)

~millisecond timing resolution (1/10)

放球地点 日時:5月12日午前6時03分JST 場所:アリススプリングス気球放球基地 着地地点 日時:5月12日午後8時25分JST 場所:クイーンズランド州ロングリーチの 北方約130km地点

Flight duration: 14hour22min (11hour32min(x7) @36.0-37.4km) almost covered Vela w/in 45deg zenith image©JAXA

Launched, 6:33 12th May 2015 Design, various improvements & preparations Establishment of a scheme & flow of the experiment in Australia Demonstration of the telescope performance

Image©JAXA

S. Takahashi et al., PTEP 073F01 (2016); K. Ozaki et al., JINST 10 P12018 (2015)

Summary of GRAINE 2015

- 3780cm² aperture (x30, new-type emulsion films, total 48m²)
- 14.4hour flight duration (11.5hour(x7)@36.0–37.4km)
- Establishment of a scheme & flow of the experiment in Australia
- Playing a role of a precursor of a JAXA ballooning in Australia
- Emulsion track read-out, total 41m² w/ HTS
- Emulsion film S/N ratio x~20, data size ~1/20
- Track finding inefficiency in a single film ~1/10
- Data reduction load for γ -ray event detection ~1/200
- Data processing of all active area, 2830cm² aperture (total 30m²)
- γ-ray PSF ~1.0deg@100MeV
- Timestamping over the flight duration (6:30 20:00)
- Time resolution, 9.8 msec (~1/10)
- Star camera sensitivity, magnitude of 6.1 \rightarrow 7.5

Significant progress from GRAINE 2011

H. Kawahara, et al., KMI 2017, https://pos.sissa.it/294/059; H. Rokujo, et al., PTEP 063H01 (2018); F. Mizutani et al., NIMA (Submitted).

GRAINE 2015

 γ -ray detection from Vela Pulsar (Not achieved)

Apr 2018, JAXA ballooning in Australia

Prospects for enlarging effective area x time and BG reduction

- Robustnized star camera systems $\rightarrow x1.77$ eff. time
 - Redundant data storages, Recoverable system from errors
- Stabilized emulsion films $\rightarrow x1.33$ eff. area
 - Established optimal parameters for production & processing
- Established multi-stage shifter setup $\rightarrow x1.33$ eff. area x time
 - Optimized emulsion film mounting
- Corrected multi-stage shifter operation $\rightarrow \times 1/2$ BG

Total x6.3 improvements.

(x5, effectively)

Overall performance demonstration Imaging resolution aimed w/i 1deg above 100MeV

GRAINE 2018

Google Earth Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus

Flight duration: 17.4h (21%个). Sydney Level flight @38.1 – 35.4 km: 14.7h (28%个) Fully covered Vela pulsar in 45 deg zenith (10%个)

anokn

reac

Stably operated (Multi-stage shifter, 3 star cameras, Pressure vessel)

✓ Recovered (Apr 27 to Longreach)

Alice Sprin

Developed (Apr 29 – May 13 @U Sydney)

Various developments, improvements, preparations

Aperture of 3780cm² @BLS A

GRAINE 2018, JAXA Scientific balloon @BLS Alice Springs Australia, 6:30AM 26th April (ACST)

GRAINE 2018, Converter, γ -ray event detection

GRAINE 2018, Flight data analysis, Timestamper, Timestamping

GRAINE 2018, Flight data analysis, Attitude monitor

Progress of data processing v0: つなぎの精度×30 or 50 for Vela pulsar observationDone processing

Radial profile (θ^2 distribution) >80MeV 20

Atmospheric γ-ray measurements

- BG and detector response understanding
- Atm. γ-ray physics (Primary, Solar activity, Geomagnetism, Atmosphere, Interaction, Secondary)
 - Flux and East-West effect in Sub-GeV
 - Comparison w/ atm. v flux calculation
 - Contribution to Neutrino physics
 - Advantage by balloon-borne experiments

Search for hadron showers over the detector area

Takahashi, Aoki **GRAINE** Scientific observation roadmap et al., ASR 62 2021–, Scientific flight Apr 2018, Demonstration (2018) 2945 Done Alice Springs Alice Springs etc. incl. North. Sky by JAXA balloon 0.38m² aperture 10m² aperture 17.3hours flight duration >~36hours flight duration $3-5 \text{ g/cm}^2$ altitude <~10g/cm² altitude Pioneering polarization Vela pulsar observation for high Highest imaging for Vela pulsar Polarization observation (<50%) energy γ-rays 7.4 σ detection 0.51deg 68%radius (>80MeV) SNR W44 (<200MeV, >200MeV) Studying cosmic ray Precise spectrum measurement sources Galactic diffuse High resolution imaging BG understanding w/i 1% level 2.7σ indication **Galactic** Center Resolving GeV γ-ray Atmospheric γ -ray physics Obs. with ~arcmin resolution excess at galactic center Flux and EW effect in Sub-GeV Comparison w/ atm. v flux calculation

Contribution to v physics
 Advantage by balloon-borne exp.

Hadron shower

over the detector area

- Calib. source over the detector area
- > Atm. γ -ray discriminable

Test of fundamental symme<mark>tries beyond the Planck scale</mark>

Transient sources

Obs. w/ high sensitivity

& high photon stats

Studying transient sources & w/ ones

Search for γ -ray correlation with Giant Radio Pulses from pulsars Search for GeV γ -ray Pair Halo \rightarrow Constraints on IGMF

Search for GeV γ -ray Pair Halo \rightarrow Constraints on IGMF

For GRAINE 2022 Pressure vessel gondola 2.5 m² (2 units) Light /Thin, 0.3atm 700kg payload/

First flight model of <u> Timestamper</u> new-type multi-stage shifter Co-developed w/ Mitaka Kohki

Large Aperture Long duration High timing resolution LowE threshold 1.251

	2018 model	New mod
Size [m ²]	1.5 x 0.7	1.8 x 1.4
Aperture area [m ²]	0.38	1.25
# of stages (w/o fixed stg.)	3 <u>×1</u>	.3 4
Gap [mm] ()内は最終段間	1 (0.5) <u>×1</u>	0.5
Weight [kg]	65	80
Weight _{w/} 1.25m ² -ap [kg]	214 ×1/	2.7 80

~1/3 weight per area **čf.** 2018 model

Large vacuum packing machine

Largest vacuum packing in the balloon-borne experiments

Gel production, Machine coating, Quality control Preprocessing, Vacuum packing, Developing

Emulsion scanning system