Fast radio bursts in the era of Cherenkov Telescope Array

Tetsuya Hashimoto

(Centre for Informatics and Computation in Astronomy: CICA fellow, NTHU)

- TH et al. 2020a, MNRAS, 494, 2, p.2886-2904
- TH et al. 2020b, MNRAS, 497, 4, p.4107-4116
- TH et al. 2020c, MNRAS, 498, 3, p.3927-3945

The extreme Universe viewed in very-high-energy gamma rays, 4 Dec. 2020

Outline

1. Introduction

What is the fast radio burst?

2. Our results: origins of FRBs

Luminosity-duration relation Luminosity function

3. Future: the SKA and CTA

The golden age of FRB research

4. Conclusion

Introduction: Fast radio burst (FRB)

Introduction: Fast radio burst (FRB)

Extra-galactic burst in radio >10 Nature papers lithess since 2018

Their origins are unknown Second

Credit: Danielle Futselaar

CHIME

ASKAP

Parkes

UTMOST

Introduction: Detection per year

Introduction: Observables

Introduction: Dispersion measure

Distant Universe

Nearby Universe Observer

Introduction: Observables

Introduction: Repeater/Non-repeater

Introduction: >50 theories

Supernova rem. Young Pulsar Active SMBH Magnetar

Introduction: >50 theories

Supernova rem. Young Pulsar Active SMBH

One Galactic repeating FRB

e.g., the CHIME/FRB collaboration et al. 2020

Problem Only one confirmed case out of >100 FRBs

Solution (my talk) A statistical approach to constrain their origins

2. *Our results: origins of FRBs* TH et al. 2020a and c

Results: (i)Luminosity and (ii)duration

Results: (iii)Luminosity functions

Conclusion: Repeater/Non-repeater

(i)luminosities, (ii)durations, and (iii)luminosity functions

Introduction: Old vs Young

Results: Repeaters

Results: Repeaters

Conclusion: Old vs Young

Number density ∝ stellar mass

Summary:

(2. Our results: origins of FRBs)

Non-repeaters and repeaters are indeed different in terms of duration, luminosity, and luminosity function, suggesting different origins.

Non-repeaters and repeaters likely originate from old and young objects, respectively.

Our statistical approach is consistent with the confirmed case (Galactic magnetar).

3. Future prospects: the SKA and CTA

Future: FRB-related sciences

(0)<u>Origin of FRBs</u> (e.g., TH et al. 2020a,c)

(1)Dark energy (e.g., TH et al. 2019a)

(2)Cosmic reionization (e.g., TH et al. 2020d)

(3)Missing baryon problem

(e.g., Prochaska et al. 2020)

Verticed of the second second

Credit: Loeb 2006

However, only ~100 FRBs to date (FRBCAT)

TH+2020b: How many FRBs will the SKA detect?

Focusing Squarely on FRBs with the Square Kilometre Array

https://astrobites.org/2020/08/27/focusing-squarely-on-frbs-with-the-square-kilometre-array/

Future: The Square Kilometre Array

The SKA will start science operation in 2020s in South Africa and Australia.

Future: The Square Kilometre Array

Future: How many FRBs are in the Universe?

Future: How many FRBs with the SKA?

Future: How many FRBs with the SKA?

Future: The CTA is definitely important

Credit: https://www.cta-observatory.org/

Possible counterparts of FRBs

<u>VHE:</u>

Ultra-relativistic outflows + ambient material

(<u>>~ms</u>, e.g., Lyubarsky 2014; Murase et al 2016) Relativistic jet from a super massive black hole

(sec-min, e.g., Vieyro et al. 2017)

X-ray to MeV:

Magnetar (<u>~ms</u>, e.g., Lyutikov 2002; SGR1935+2154) <u>Optical:</u>

Magnetic reconnection (<u>~ms</u>, e.g., Kumar et al. 2017) NS-NS merger (<u>~day</u>, e.g., Yamasaki+2018) WD-WD merger (<u>~day</u>, e.g., Kashiyama et al. 2013)

Possible counterparts of FRBs

<u>VHE:</u>

Ultra-relativistic outflows + ambient material

(<u>>~ms</u>, e.g., Lyubarsky 2014; Murase et al 2016)

Relativistic jet from a super massive black hole

(sec-min, e.g., Vieyro et al. 2017)

X-ray to MeV:

Magnetar (<u>~ms</u>, e.g., Lyutikov 2002; SGR1935+2154)

Optical:

Magnetic reconnection (<u>~ms</u>, e.g., Kumar et al. 2017) NS-NS merger (<u>~day</u>, e.g., Yamasaki+2018) WD-WD merger (<u>~day</u>, e.g., Kashiyama et al. 2013)

Benchmark of future FRBs observations

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **481**, 2479–2486 (2018) Advance Access publication 2018 September 04 doi:10.1093/mnras/sty2422

Constraining very-high-energy and optical emission from FRB 121102 with the MAGIC telescopes

MAGIC Collaboration: V. A. Acciari,¹ S. Ansoldi,^{2,3} L. A. Antonelli,⁴ and et al.

Simultaneous observations of repeating FRB 121102 using Arecibo and MAGIC (~9 hours on source).

Five FRBs were detected.

$$\label{eq:LVHE} \begin{split} L_{VHE} &< 10^{49} \mbox{ erg s}^{-1} \mbox{ <-- VHE} \\ f_{opt} &< 8.6 \mbox{ mJy } \mbox{ <-- Optical} \end{split}$$

- Our statistical approach: different origins of non-repeating and repeating FRBs, i.e., old and young objects, respectively.
- The SKA: 10⁵-10⁶ FRBs per year
- The CTA: VHE and optical counterparts of FRBs --> FRB origin(s)