

高圧キセノンガス検出器を用いた ニュートリノレス二重ベータ崩壊探索

Sei Ban Kyoto University For the AXEL collaboration

8 Feb 2021, 令和2年度東京大学宇宙線研共同利用研究成果発表

予算について

今年度はコロナ禍ということもあり、神岡への出張などを 行うことができなかったため、利用はありませんでした。

今年度分(10万円)は返却致します。

来年度も引き続き共同利用の申請はさせて頂きたいと思っ ております。

将来、神岡で物理測定ができないかなどの相談や放射能測 定に伺うための利用を予定しております。 Neutrinoless double beta decay

AXEL experiment

Prototype detector

R&D for more sensitivity

4

Neutrinoless double beta decay

AXEL experiment

Prototype detector

R&D for more sensitivity

It occurs only if the neutrino has Majorana mass term

If the neutrino is Majorana

- naturally explains the smallness of the neutrino mass
- One of the conditions of Leptogenesis scenario

Neutrinoless double beta decay

 \rightarrow high pressure xenon gas TPC

7

Neutrinoless double beta decay

AXEL experiment

Prototype detector

R&D for more sensitivity

A Xe ElectroLuminescence : AXEL

High pressure Xe gas TPC with unique cell readout structure for $0\nu\beta\beta$ decay search Tracking

A Xe ElectroLuminescence : AXEL

Electroluminescence Light Collection Cell : ELCC

- Energy measurement and Tracking
- Uniform response regardless of event position
- Extendable to large size thanks to its rigid structures

Neutrinoless double beta decay

AXEL experiment

Prototype detector

R&D for more sensitivity

Prototype detector

性能評価 @4気圧

- 各種カット、補正後のエネルギースペクトラム
- ¹³³Ba, ²²Na, ¹³⁷Cs 由来のピークがはっきり見える
- Energy resolution is evaluated by Gaussian fitting
 - 1.57 % at 662 keV \rightarrow 0.81 % at Q-value by \sqrt{E} (FWHM)

Prototype detector

Q値(2458keV)での性能の見積もり

- 2通りの仮定をおいて外挿: $\Delta E \propto A\sqrt{E}$ or $A\sqrt{E+BE^2}$
- Q値でのエネルギー分解能: 0.81~0.84 % (FWHM)
- Eの1次の寄与はほとんど無い

Prototype detector

イベントディスプレイ

15

16

Neutrinoless double beta decay

AXEL experiment

Prototype detector

R&D for more sensitivity

Low radioactive materials

- 背景事象削減のため極低放射能素材を用いる必要がある 検出器に用いる素材の放射能を調べている
- → 調査の結果を見て、バックグラウンド源になり得る素材の 見直しを行っていく
- MPPCのパッケージが汚いことが判明したので、 PEEKパッケージのMPPCを浜ホトと開発している

Ba++ tagging

⁽¹³⁶⁾Ba⁺⁺ : daughter nuclei of ¹³⁶Xe $\beta\beta$ decay

 \rightarrow tagging Ba⁺⁺ is a strong evidence of $0\nu\beta\beta$ decay

Our strategy : drift Ba⁺⁺ ion \rightarrow trap in solid xenon (Ba⁺⁺ \rightarrow Ba⁽⁺⁾?)

 \rightarrow excite it by laser \rightarrow detect the de-excitation light

Field shaper **ELCC** & reflector **PMTs** PMTs are placed at the side wall LXe SXe Ba++ (& Xe+) **De-excitation** Laser Ba++ lights LXe&SXe Electrode (T~100K) Glass aser noto-detector LN2

20

Neutrinoless double beta decay

AXEL experiment

Prototype detector

R&D for more sensitivity

- AXEL is a high pressure xenon gas TPC for neutrinoless double beta decay search
 - High energy resolution with EL and cellular detection scheme
 Topological information
- Performance evaluation with prototype detector is ongoing estimated ΔE : 0.81 \sim 0.84 % (FWHM) at Q-value
- Background rejection strategy for future measurement
- Choice of materials : low radioactive materials
- Ba++ tagging \rightarrow Ba++ tagging and detection system