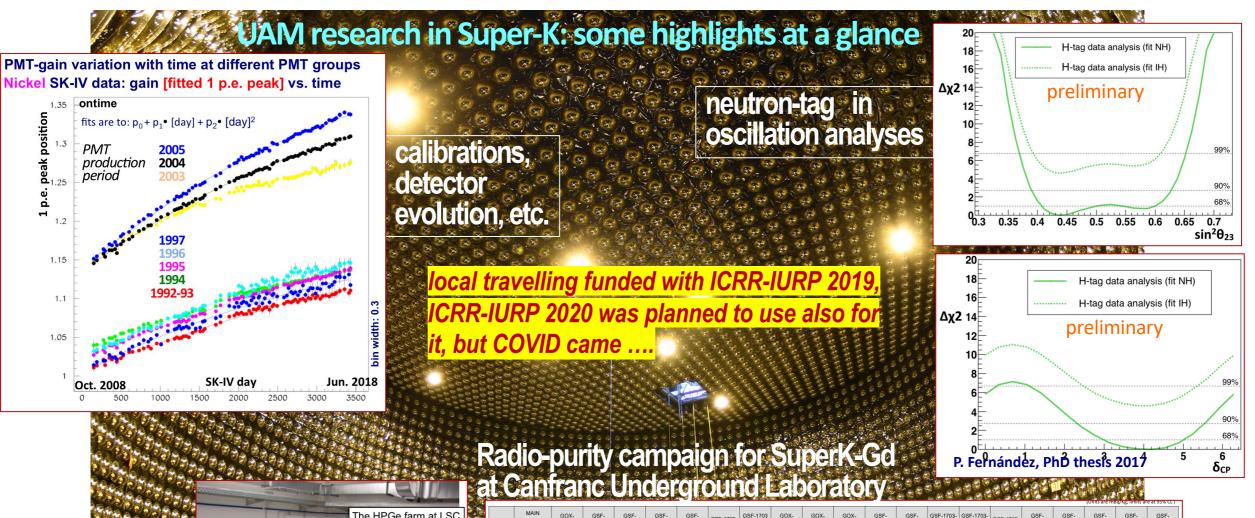
Research Result Presentation Meeting of the ICRR Inter-University Research Program 2020

Brief report on

A05: Data Taking, Calibrations, Measurements and Analysis with Super-Kamiokande and SuperK-Gd 200.000 ¥


B01: Development and testing of cost-effective, high-performance Photo-Detector anti-implosion covers for Hyper-Kamiokande 500.000 ¥

which are follow-ups of two similar ICRR-IURP 2019 projects (the HK one had D. Bravo as IP)

and hopefully predecessors of the two new ICRR-IURP 2021 projects just submitted

February 8th 2021

L. Labarga (University Autonoma Madrid, UAM)

		i (an	irai	10	Jn	der		Dur		6
	The HPGe farm at LSC	CHAIN	MAIN SUBCHAIN ISOTOPE	GOX- 1510- D-001	GSF- 1701-D- 003	GSF- 1705-D- 001	GSF- 1711-D- 171111B	GSF- 1711-D- 171111A	GSF-1703- A-702142	GSF-1703 B- (RGD- OSF-005)	GOX- 1603- B-237
100		²³⁸ U	²³⁸ U	1672 ± 122	< 45	< 11	< 52	< 168	< 13	< 13	< 68
II DOMES			²²⁶ Ra	< 2.8	0.4 ± 0.2	4.3 ± 0.6	< 1.1	2.0 ± 1.4	0.7 ± 0.4	< 0.34	< 0.9
		²³² Th	²²⁸ Ra	259 ± 6	28.5 ± 1.1	12.2 ± 1.0	300 ± 7	778 ± 39	< 0.39	< 0.39	< 2.7
			²²⁸ Th	124 ± 3	6.3 ± 0.5	2.5 ± 0.4	31 ± 2	70 ± 3	1.7 ± 0.4	< 0.28	< 2.5
		²³⁵ U	²³⁵ U	28.7 ± 1.5	< 1.5	< 1.0	< 3	< 4	< 1.3	< 0.77	< 1.6
			227Ac / 227Th	< 14	< 5.5	3.4 ± 1.4	31 ± 5	46 ± 9	< 3.1	< 2.3	< 4.3
			40K	21 ± 6	< 1.0	< 1.8	27 ± 3	57 ± 4	< 8.2	< 3.2	< 4.6
			¹³⁸ La	< 3.2	< 0.25	< 0.36	< 2.4	< 2.4	< 0.29	< 0.29	< 0.6
			¹⁷⁶ Lu	5.9 ± 0.4	26.5 ± 0.8	6.1 ± 0.4	< 1.2	4.3 ± 0.6	2.6 ± 0.3	< 0.29	< 0.8
A CONTRACTOR			¹³⁴ Cs	-	-					- 201	< 0.24
			¹³⁷ Cs	-	-	J. Pe	erez,	PND '	tnesi	s 201	< 0.3
		Exce	llent Gd	2(SO ₄) ₃	achieve	ed, with	nin spe	cificatio	ons with	nin expe	erime

< 0.12 < 0.10 [MATerial*-date-Company-lot]

1710-C

170901

< 9.7

< 0.19

< 0.24

< 0.28

< 0.35

< 1.7

< 0.8

< 0.09

 13 ± 0.03

1707-B

007

< 10

< 0.18

< 0.21

< 0.26

< 0.3

< 12

< 0.9

< 0.20

 0.8 ± 0.1

< 0.06

1710-C-

170902

< 12

< 0.21

< 0.26

< 0.41

< 1.4

< 1.0

< 0.05

11+0.04

< 0.06

1710-C-

170903

< 11

< 0.21

< 0.30

< 0.30

< 0.42

< 1.6

< 0.7

< 0.14

< 0.14

< 0.07

1604-C

160303

< 20

< 0.64

< 0.6

 0.5 ± 0.2

< 0.7

< 2.3

< 1.6

< 0.3

< 0.4

< 0.1

B-007

< 10

< 0.18

< 0.21

< 0.26

< 0.3

< 1.2

< 0.9

< 0.20

0.4±0.1

< 0.06

< 0.12

within specifications within experimental limits; Now preparing for mass production screening

1603-

B-239

< 130

< 1.0

< 2.3

< 1.4

< 0.8

< 5.3

< 0.7

< 0.7

< 0.4

1603-

B-236

< 36

< 1.4

< 1.4

< 0.8

< 1.0

< 3.4

< 0.7

< 1.6

< 0.23

1604-

B-1

< 25

< 0.6

< 0.7

0.9±0.3

< 3.1

< 6 1

< 2.1

< 0.5

0.4±0.3

< 0.24

< 0.24

1611-

B-003

< 13

< 0.3

< 0.4

< 0.6

< 1.9

< 1.8

< 0.3

0.4±0.1

< 0.09

< 0.16

B-(RGD-

< 0.30

< 0.33

< 0.69

< 1.8

< 1.5

< 0.29

< 0.46

< 0.09

< 0.12

B-(RGD-

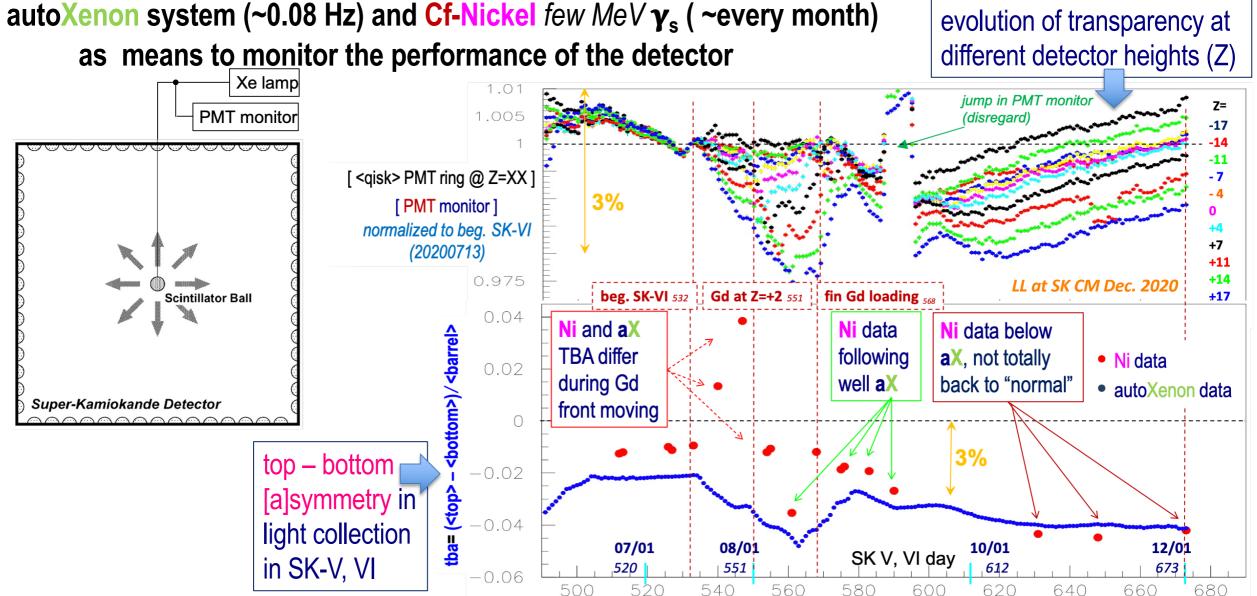
OSE-005)-

< 19

< 0.54

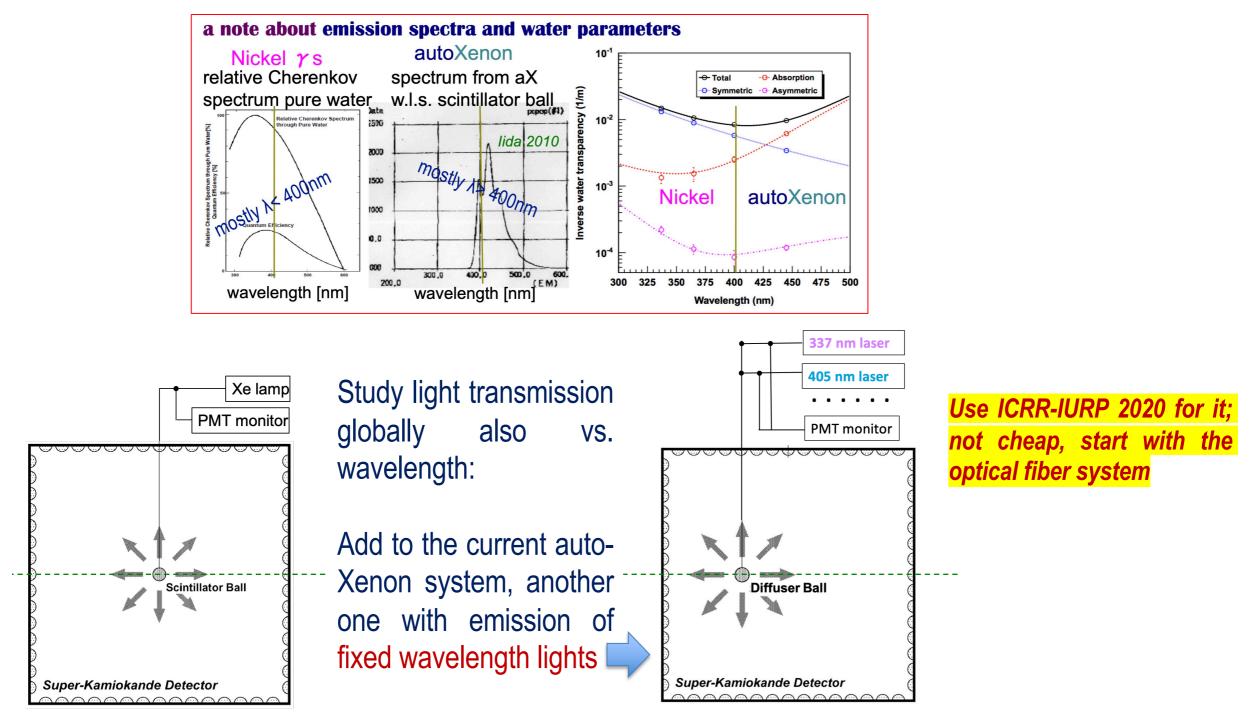
< 0.74

< 0.43


< 0.82

< 2.0

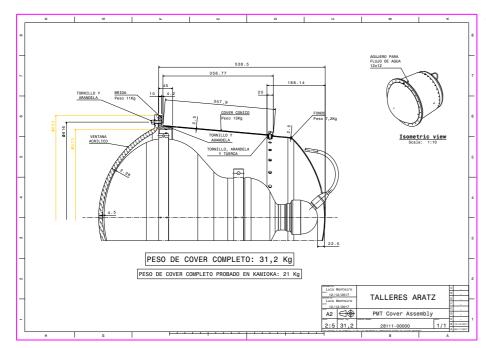
< 2.5


< 0.31

< 0.41

 \rightarrow very powerful system

 \rightarrow for instance, the differences Ni vs. aX TBA during Gd loading might indicate a difference in light transmission at different wavelengths (also observed qualitatively with the Korean laser system) \rightarrow try to improve with ICRR-IURP 2020


UAM research/works in Hyper-Kamiokande: two highlights

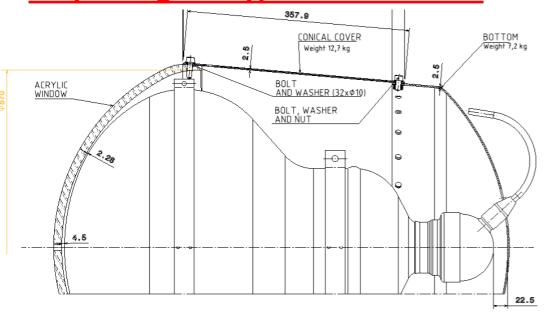
- building a strong Spanish participation in the experiment: already 7 groups - identifying relevant parts of the experiment for suitable contributions by Spain: see next

Diameter 74m Structure of upper part Access Tunne Lining Concrete Shotcrete Height 78m **Plug Manhole** Outer Detector Inner Detecto (Photo Sensor) (Photo Sensor) (Tyvek Sheet) Mylar Sheet **40.000** units at most

basic in HK are the photo detection system units

- fantastic PMT R12860-HQE
- o problem with chain reaction after accidental implosion of one PMT: the case of SK
- o need new implosion mitigation cover (SK: 40 m, HK: 70 m)
- \circ careful dessign needed: efficiency, noise, safety etc.
- \circ UAM + LSC + are working hard in making them a reality

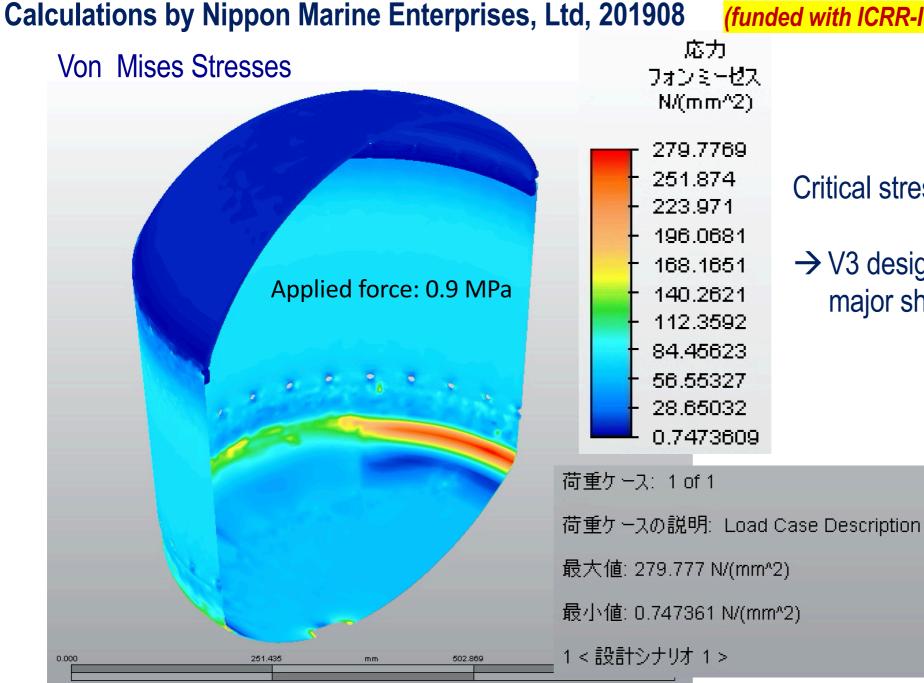
V2.2 successfully tested both hydrostatically and with induced implosion


Ougk/vie/

<u>com/file/d/1N1BrW</u>

<u>ittps://drive.google</u> 7504Z1MKmGp2Fav

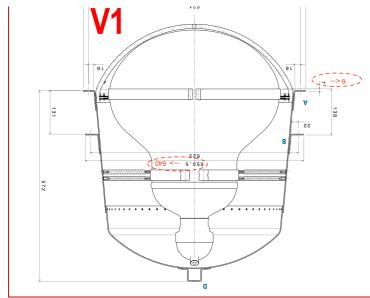
Propossing for Hyper-Kamiokande: –


V3: probably the simplest, most robust, and cheapest approach

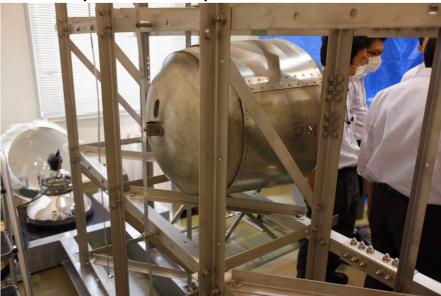
- flangeless acrylic domes
- Attachments by rivets

the prototypes passed -9 bar hydrostatic tests

but keep/improve current version V2.2 (\rightarrow V2.3) as alive backup

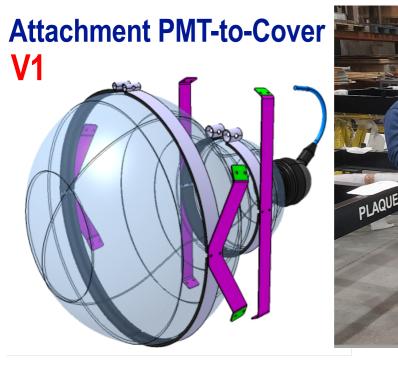


Critical stress: ~500 N/mm² \rightarrow V3 design does not show any

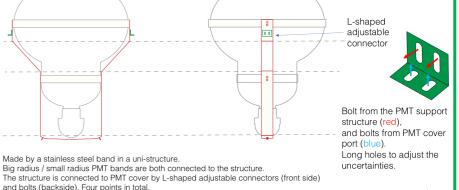

major show-stopper

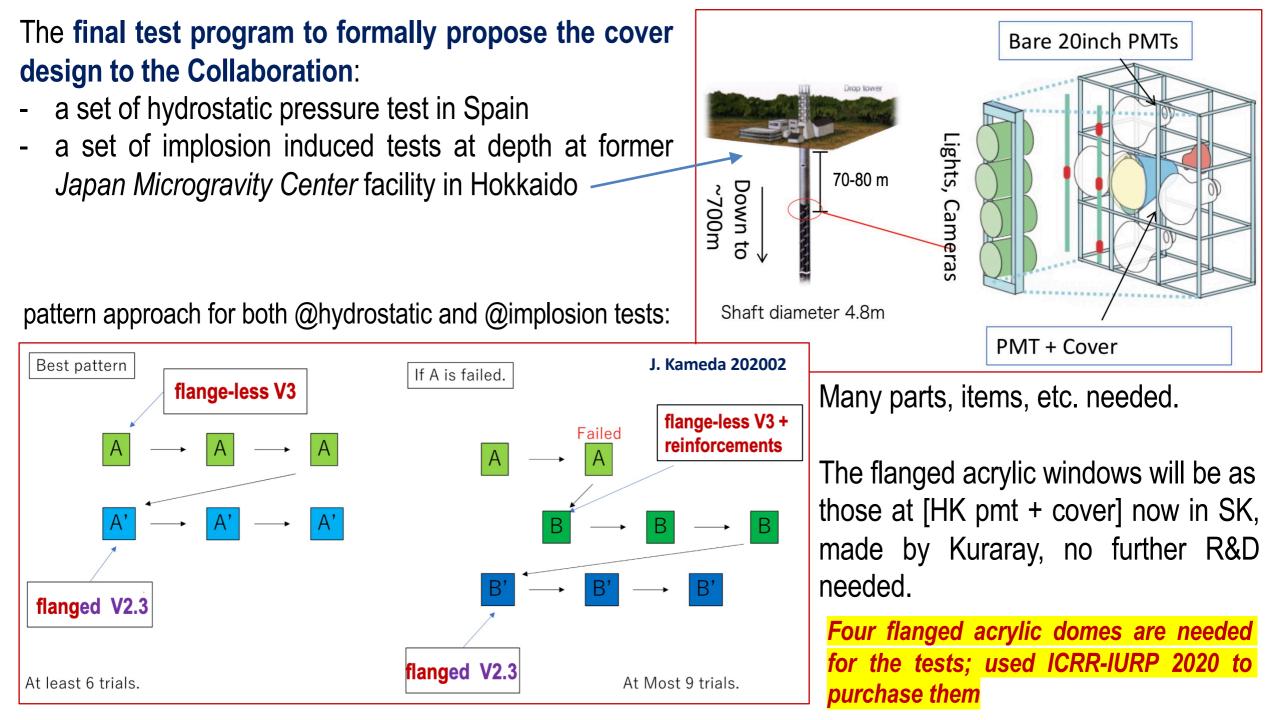
(funded with ICRR-IURP 2019, D. Bravo, UAM)

Attachment Cover-to-Structure



unit of sp-cover in place in Kashiwa HK mockup structure for testing


HK PMT no vacuum for testing attach. hased with ICRR-IURP 2020



Update of an idea of PMT connection method (J.K. Sep.16) other alternatives pursued

Summary

UAM has been granted with two ICRR-IURP 2020 projects:

A05: Data Taking, Calibrations, Measurements and Analysis with Super-Kamiokande and SuperK-Gd B01: Development and testing of cost-effective, high-performance Photo-Detector anti-implosion covers for Hyper-Kamiokande

they are follow-ups of two similar ICRR-IURP 2019 projects (the HK one had D. Bravo as IP) ... and hopefully predecessors of the two new ICRR-IURP 2021 projects just submitted

ICRR-IURP is an extremely useful program.

It has helped UAM very much in its research around SK and HK by funding

- Research trips inside Japan
- Preparations of a new auto-monitoring system for Super-Kamiokande
- Finite Element Modeling of its design of an acrylic window without flange
- Acquisition of HK PMTs with no vacuum for mechanical tests
- Acquisition of HK flanged acrylic windows for the final test program of the sp-cover

-

Thank you very much ICRR for your Science and your support !