ICRR Inter-University Research Program 2020 Neutrino and Astroparticle Research Division

New Photogrammetry Calibration (and Machine Learning Event Reconstruction) for Super-Kamiokande and Hyper-Kamiokande

> Patrick de Perio Feb. 9, 2021

Funding Summary

Approved amounts:

Year	Goods	Travel	Тор-ир	Total
2019	700,000	300,000	500,000	1,500,000
2020	200,000	300,000		500,000

Actual spending:

Year	Goods	Travel	Total	Remainder
2019	832,236	653,170	1,485,406	14,594
2020	78,782	127,339	206,121	293,879*

*Applied for carry-over due to Covid-19 pandemic

Super-Kamiokande

Systematic Error: Geometry

PMTs assembled in air

Systematic Error: Geometry

 Example systematic deviation of ID PMT geometry

 Nominal assumption in analysis can produce incorrect results

> Critical for precision measurements

Potential PMT shifting due to

Photogrammetry

Reconstruct the 3D structure from multiple 2D photographs to mitigate systematic error

Underwater Drone

14.3 cm

Inside SK outer detector

38.3 cm

Remote piloting

Backup Underwater Cameras, Lamps, and

Photogrammetry Survey Highlights

Example Survey Photo (>13000 photos taken)

. 🕥 :

()) ·

PMT Cover Bolt Ring Measurement

Funding Summary

- 2019 Goods: Drone, cameras and lamps, deployment hardware
- 2019 Travel: Detector survey and presenting work at collaboration meetings
- 2020 Goods: Cameras and lamps for PMT structure mockup test in Kamioka
- 2020 Travel: Temporarily shipped equipment to Canada to continue evaluations and calibration

Actual spending:

Year	Goods	Travel	Total	Remainder
2019	832,236	653,170	1,485,406	14,594
2020	78,782	127,339	206,121	293,879*

*Applied for carry-over due to Covid-19 pandemic

Future Work

- Evaluation of different underwater cameras and lamps with PMT mockup structure in Kamioka (and Canada)
- Evaluation, design, and testing of different drones
 - Development of global positioning systems and automatic piloting
- Design fixed camera/lamp mounting systems (on PMT support structures)
- Deliver complete photogrammetry systems for Hyper-Kamiokande and new Intermediate Water Cherenkov Detector (IWCD)
 - Also for Super-K in case of another future tank opening
 - Critical for precision measurements and discovery potentials
- Many thanks to ICRR-IURP for your support in making this possible!!

Appendix

Geometry Survey for Photogrammetry

- Fairly good coverage of whole detector
 - Including top and bottom caps
 - ~1800 positions, ~13000 photos
- Potentially undersampled regions
 - Limited time: 5.5 hours total
 - Difficult to track during piloting
 - Sensor plots were not available during TOW
- Analysis will tell if this current photo set is sufficient

Motivation: Systematic Errors

- Aim to achieve 1% level detector systematic error for e.g. δ_{CP} measurement
- Example here of current Super-K energy scale "error"
 - Derived from residual (unexplained) data/MC discrepancies
 - Therefore, not strictly propagated from the uncertainties in underlying physical parameters
 - i.e. Each point is a measurement with statistical error, but what is the systematic error in each point?

 Attempt to dig even deeper into physical parameters of the detector to try to resolve data/MC discrepancies and estimate systematic errors

Overview of photogrammetry analysis

Feature Detection

- Developing algorithms to automatically detect features of interest and return their 2D pixel coordinates
- Traditional image processing: edge filtering, blob detection, Hough transforms, noise reduction, etc.

 Machine learning: training with many labeled masks

(Dan Martin.

Imperial College London)

Processing (*Tapendra B C*, University of Winnipeg) 19

Feature Detection Difficulties

- Low light level (far distance) \rightarrow Noisy images
 - Future: Multiple drones for optimally placed light sources
- Drone instabilities → Blurry images
 - 1800 positions to cover most of SK, but constrained to 5.5 hours
 - Sometimes insufficient time for drone to stabilize before photo
 - Future: work with companies to improve drone stability; budget more time for data taking, e.g. >24 hours for a single scan of HK
 - Develop automated piloting system together with a positioning system to minimize pilot error
- PMT illumination risk \rightarrow dark rate excitation
 - Tried yellow filter to suppress wavelength in high QE region
 - Severely affected quality of photos for feature detection
 - After survey, observed no significant increase in PMT dark rates; suggesting short periods of illumination with white light is OK
 - Similar experience on SNO+

60

249

Feature Labeling

- Initial manual labeling demonstration of subset of SK photos estimates ~2000 hours for entire set
- Developing procedure to automatically label PMT (and bolt) IDs
 - Using some input reference known PMT ID geometry, and potentially drone
 sensor info
 - Future: sonar/ ultrasonic positioning

t of SK	1014 963 912 10 10t 810 759 708 . 0	87 . 9
	injectors as injectors	50 - 61
) nours for	1012 981 910 859 808 757 768 6	85 9
	1811 960 (mPMTs in 56 705)	84 76
0	1010 959 HK to help? 304 6	đa 6
(and	1009 958 907 856 805 754 703 9	6\$2 10
	ig Tõos 937 9õs sõs sõ4 753 762	681 6
nce.	58 1007 956 905 854 803 752 701	
)	057 1006 955 904 853 862 751 760	
Feb. 19: Barrel		
	Drone positions	
14	Drone headings	
12 0*	Light injector positions	
	••	-
	φ(°)	

1015 964 913 862

Measuring distance between adjacent bolts

True distance between bolts should be ~7.78±0.02 cm

- Absolute scale is not determined by photogrammetry
- Look at spread of distances to estimate reconstruction errors
- (assume bolt distance is very precise in SK)

Spread suggests reconstructed distance errors of ~ 0.2 cm

But larger errors might exist over longer distance measurements

Planarity

- Fit a plane to each bolt set
 - Get normal vector for each
- Angle between normal of fitted plane of each super-module = 9.42°

1500 1400 1300 1200 11000(x

QYSEA FIFISH V6 Drone

- Relatively cheap (350000¥) consumer underwater drone
 - 100m depth rating 0
 - Small enough to fit through largest calibration port (~40 cm)
 - 6 DOF movement control (forward/backward, right/left, up/down) 0
 - Full orientation control (360° pitch, roll, yaw)
 - Can directly face end-caps; highly maneuverable
 - Depth and orientation sensors built in
 - Good low-light 12 MP camera sensor
 - Though flat lens port window not ideal for distortion
 - Sufficient (variable intensity) lighting: 4000 lumen total 0
 - Tethered for remote control and safety
 - Live stream to mobile device
 - 4 hour battery life (1 hour charge time)
- Two drones purchased
 - For backup in case of failure or recharging
- Company highly responsive and supportive
 - Quickly pushed firmware upgrades and troubleshooting

DISCONNECT

0m < 0.00m

38.3 cm

Camera Calibration

- Assume some distortion parameterization (e.g. fisheye) with free (intrinsic) parameters
- Now assume calibration pattern points are perfectly known, fitting only camera pose (extrinsic) and intrinsic parameters
- Best mean reprojection error achieved = 0.35 pixels

3D reconstruction: Determining (Seed) Camera Poses

Use seed 3D positions from expected geometry

- 1. Load pixel coordinates of identified features in images
- 2. Determine camera poses from assumed 'expected' 3D feature positions
 - Camera poses: relative position and orientation in 3D space

Machine Learning

https://prezi.com/frzewoqflgsc/lbnl-rpm-oct-2019

Intermediate Water Cherenkov Detector (NuPRISM)

Particle Identification

Gamma Background Discrimination

electron (1 track)

multi-PMT (mPMT)

19 x 3" diameter PMTs in a single module

multi-PMT

Higher Granularity and Timing Resolution

8" PMT

mPMT (3")

One Slide Crash Course on CNNs

Kazu Terao (SLAC)

Event Reconstruction with Deep Learning

Machine learning reconstruction

Initial studies of particle type classification in IWCD with ResNet CNN

ResNet-18 CNN architecture

- Cylinder unwrapped onto 40x40 pixel image

 1 mPMT per pixel
 38 channels: time, charge
 - of the 19 PMTs per mPMT
- 3M of each of muons, electrons, gammas
 - Uniform positions throughout tank
 - Isotropic directions
 - Energies from 0 to 1 GeV above Cherenkov threshold
 N. Prouse

Significant improvement seen in muon vs electron discrimination

Neutral current gamma production is significant systematic uncertainty in oscillation analysis

While no electron/gamma separation with fiTQun has been successfully used, ML looks promising

Machine learning reconstruction ⁵⁰⁰

Many other possibilities under investigation

- Reconstruction of physical quantities
- PointNet (point cloud NN) & Graph NNs for flexibility of detector geometries
- New methods for mapping cylinder to CNN images
- Generative networks to calculate fiTQun likelihoods
- Generative networks for improving simulation and detector systematics

