Study of dark matter with compact binary coalescence

Lan Quynh Nguyen

Center for Astrophysics, Department of Physics, University of Notre Dame

Title:

Collaboration for gravitational wave observatory in the study of dark matter with compact binary coalescence

• Team:

Lan Q. Nguyen^{*}, G. Mathews, L. Arielle Phillips, A. Kedia, M. Correa, N. Khang, H. Tagoshi, S. Myoki.

- Budget: Y 200,000
- Period: April 2020 April 2021
- Results:
 - 01 publication
 - 02 talks

The Gravitational waves – "Hearing" the Universe

nce Tear

Origin and Nature of the Dark Matter?

(credit: HAP / A. Chantelauze)

I. Self-Interacting Dark Matter in Beyond Standard-Model Physics

II. Self Interacting Dark Matter and Galaxy Structure Problems

III. Dark Matter and the Gravitational Wave Signal from binary neutron star mergers

Kamada, Kaplinghat, Pace, Yu, (2018)

GW170817 from merging neutron stars

Tidal deformability for 1.4 M_{\odot} Neutron star with $10^{\text{-4}}M_{\odot}$ of dark matter.

Ann Nelson, Sanjay Reddy, Dake Zhou, <u>JCAP 2019</u>

Ongoing research

- MeV dark matter can play a role in neutron stars.
- Dark matter production during supernovae and mergers can be significant.
- Dark matters and their tidal polarizability

Dark core

Acknowledgement

- ICRR Inter-University Research Program
- KAGRA collaboration
- Department of Physics, University of Notre Dame