

Development of the CTA/LST telescope control system

Ie. Vovk ICRR, University of Tokyo, Japan

Research result presentation meeting, 09.02.2021, online

Cherenkov Telescope Array project

The largest Cherenkov observatory every built

~1500 scientists and engineers ~200 institutes 31 countries

Southern site (Chile)

Large international effort

Northern site (Canary Islands)

Layout: 4 large-sized telescopes 25 medium-sized telescopes 70 small-sized telescopes

Layout: 4 large-sized telescopes 15 medium-sized telescopes

Extremely rich scientific outcome is expected

CTA/LST control system development

Large Sized Telescope (CTA / LST)

Stereoscopic system of 4 IACTs, at La Palma, Spain

Part of CTA/North array

Telescopes:four D=23mSite:La Palma (Canary Islands)Energy range:20 GeV – above 3 TeVField of view:4.3 deg

Big contribution of Japan and ICRR group

LST1 inauguration	LST1 first light	LST1 first γ-ray source	LST1 commissioning	LST2-4 construction
Oct. 2018	Dec. 2018	Nov. 2019	2021	2023
This project: development of the control system for LSTs				

Development of the CTA/LST telescope control system

 Who
 PI: Ievgen Vovk (ICRR)
 Budget: 380,000 + 500,000 Yen

Collaboration between ICRR and University of Geneva (Switzerland)

Where

CTA-North site – La Palma, Canary Islands, Spain

What (goals for FY2020)

Work package 1 Automatic Mirror Control

- develop emulator environment (for testing)
- add "dynamic adjustment" functionality
- develop high-level control interface
- deploy updated version on-site

Work package 2 Telescope Control Unit

- prepare the subsystems environments for TCU structure block testing
- develop high-level control interfaces following the State Machine paradigm;
- deploy on-site

Many travels canceled due to Covid-19 – had to find a way to work remotely

WP1: CTA/LST1 mirror control

AMC - Active Mirror Control

Credit: CTA website

Goal:

- focus EAS light onto the LST camera;
- adapt to LST structure deformations with pointing and time.

How it works:

- mirror positioning algorithms:
 - look-up tables (fixed altitudes, works);
 - interpolation (any altitude, this project);
 - automatic positioning (future);
- control software:
 - 16 servers in the dish + 1 central server
 - dedicated control GUI/CLI (this project)
 - telescope control integration (this project)

WP1: CTA/LST1 mirror control

AMC development progress (this project)

Credit: CTA website

Goal:

- dynamic adjustments;
- telescope control integration

What was done:

- development pipeline established:
 - version control, testing, deployment;
 - redesign following CTA standards;
- "interpolation" mode added (under testing);
- telescope control integration:
 - AMC control interface;
 - real-time telemetry;
 - automatic daily status reports.

WP2: telescope control unit (TCU)

Telescope control unit (TCU):

- combines interfaces to all subsystems
- implements control logic and subsystem orchestration
- provides a simple telescope control interface to CTA observatory
- includes a web-based user interface

Crucial for CTA/LST1 commissioning (remote / robotic operation – also from ICRR) **Critical for CTA array control** (high-level management of telescopes)

TCU implementation performed within this project

WP2: telescope control unit (TCU)

What was done:

- camera / drive / AMC integrated
- high-level managers for "structure" and "camera" added
 - control logic
 - calibration operations
- commissioning database set up
 - settings
 - robotic operations log
 - subsystems telemetry
- user web-interface created
 - (multi)password-protected
 - access from anywhere
- deployment pipeline created
 - start up with a single command

TCU runs on-site since mid-2020 (testing phase)

Control software deployment / usage

AMC:

- deployment:
 - build recipes / scripts
 - software containers
- usage:
 - daily basis
 - interpolation accuracy tests
 - telemetry data for experts

TCU:

- deployment:
 - software containers
- usage
 - in parallel to "engineering" software (for testing)
 - remote operations (Jan 2021 on)

Prospects for FY2021

AMC:

- automatic (real-time) positioning
- complete control interface
- improve error handling

TCU:

- complete subsystems integration
- error handling and safety logic
- overall telescope "manager" interface
- target-of-opportunity handling
- review for LST2-4