Measurement of neutron multiplicity in muon capture on ¹⁶O in Super-Kamiokande

Shintaro Miki (Kamioka Observatry) smiki@km.icrr.u-tokyo.ac.jp

Abstruct

Neutron multiplicity in μ^- capture on 16 O was measured using cosmic ray muon in Super-Kamiokande. 26(8)% of the events ended with no neutron, 70(7)% one neutron, and 3.5(1.8)% two neutrons. This is the first direct measurement and will be used to improve reconstruction of neutrino energy and direction in future atmospheric neutrino study.

SK and Atmospheric Neutrino Studies

- Super-Kamiokande (SK) is a water Cherenkov detector, located 1000 m underground.
- Atmospheric neutrino, generated from cosmic rays in the atmosphere, is one of the main targets of SK.
- Oscillation probability depends on neutrino energy and flying distance.

→ Energy and direction resolutions are important.

Event Selection

- Events induced by cosmic muons which stopped in the detector tank (stopping muons) were accumulated.
- Livetime 33 days, in June - July 2020

Selection

2

muon stopping point

-70 50 100 150 200 250 350 350 Stopping points distribute uniformly.⁴² [m⁴2]

#	Cut	# of passed		
"		events		
0	-	253911		

1 Stopping point is >3m apart from tank wall 124623

No decay-electron 49834

Strict conditions are set for decay-e (efficiency ~65%) in order not to lose capture events. (De-excitation γ from μ^- capture mimic decay-e.)

Neutron Tagging

- Free neutron in water is captured by proton. (TimeConst. = $202 \ \mu$ s)
- \rightarrow 2.2 MeV γ is generated.
 - ▲ energy threshold in SK
- This signal is searched for using Neural Network. Signal efficiency = 27%

Result of Multiplicity Measurement

Observed neutron multiplicity

# of tagged neutron /event	0	1	2	3
# of events	47014	2750	70	0

correct analytically considering :

- tagging efficiency
 · mis-tagging
- + # of capture events (calculated from μ^+/μ^- & capture prob.)

Corrected neutron multiplicity

# of neutron /capture	0	1	2	3
# of events	2528	6808	339	0
statistic uncertainty	369	313	159	51
systematic uncertainty	678	563	69	
Total uncertainty	772	645	174	51

Systematic uncertainty mainly come from neutron tagging efficiency.

- This is the first measurement of neutron multiplicity distribution in μ^- capture on 16 O.
- Averaged multiplicity (average of # of neutron /capture) was reported to be 0.77±0.18 (M. Plett and S. Sobottka (1971)), which was 0.77±0.08 in this work.

Future Plan

- Now we have dissolved Gd in SK (SK-Gd).
- Gd emits more energetic γ (8 MeV in total) after neutron capture.
 - \rightarrow Neutron tagging efficiency is estimated to be 50-60%.
- The efficiency should be measured more precisely.

