The CTA Project

Masahiro Teshima

for the CTA Japan Consortium Institute for Cosmic Ray Research, The University of Tokyo

Science of CTA is very wide CTA-LST will cover S.M.B.H., Dark Matter, AGNs, GRBs

Cosmic Ray Origin

Super Massive Black Holes

Dark Matter Search (Discovery)

- Origin of Cosmic Rays (Big accelerators)
- Black Hole and S.M.B.H.
- Dark Matter Search

Extragalactic Sources

Active Galactic Nuclei

Gamma Ray Bursts

Galactic Sources

Super Nova Remnants

Roque de los Muchachos Observatory La Palma, Spain

Paranal, Chile

cherenkov telescope array 37 SSTs, 23 MSTs, and 4 LSTs

Telescope Types	SST	MST	LST	
Optics	Schwarzschild-Couder	Davies-Cotton	Parabolic (Isochronous)	
FoV and Camera	10.5 deg SiPM	7.5 deg PMT	4.3 deg PMT	
Mirror Diameter	4.3m	11.5m	23m	
Energy Range	3 TeV - 200 TeV	100GeV - 10TeV	20GeV – 2000GeV	
Science Target	Galactic Sources PeVatron (UHE CR)	Galactic Sources Nearby AGNs (z<0.5) Dark Matter	Transient Sources AGNs(z<2), GRBs(z <4) Dark Matter	

Telescope Configuration

Site	Telescope	Baseline config	Phase I Alpha config	Extension beyond Alpha
North	LST	4	4	
NOrth	MST	15	9	
South	LST	4	0	+4
	MST	25	14	
	SST	70	37	
Budget	Not including INFRA, ADM.	~400 MEur	244 MEur	60 MEur

- Phase I として、予算的に可能な望遠鏡配置とした。
- ・LST South +4 への期待は大きい。

- The CTA-LST array has a good sensitivity from 20 GeV to 1000 GeV
- Distant AGNs up to z = 2 and GRBs up to z = 4 are observable
- X10000 sensitivity for GRBs and AGN flares than Fermi
- The fast rotation (20 sec) offers the observation of prompt emission of GRBs

Cost Book for Alpha Configuration 4 LSTs, 23 MSTs and 37 SSTs

CTAO Cost Book Executive Summary	Cash [M€]	IKC [M€]	Total cost [M€]
Company Polatod	9 1	0.2	8 /
001 - Director's Office	2.4		2.4
002 - Administration	5.8	0.3	6.0
Construction Project	78.7	244.2	322.9
P01 - Project Management	2.4	-	2.4
P02 - Science & Science Ops. Preparation	2.3	6.3	8.6
P03 - Systems Engineering & Integration	3.2	0.1	3.3
P04 - On-Site Construction	53.4	16.3	69.6
Northern site	3.5	15.7	19.2
Southern site	49.9	0.6	50.5
P05 - Site/Infrastructure Design & Planning	2.1	3.6	5.7
P06 - Computing	13.1	39.4	52.5
P07 - Telescopes	1.6	171.6	173.3
Large-Sized Telescopes	-	60.1	60.1
Medium-Sized Telescopes	-	72.8	72.8
Small-Sized Telescopes	-	38.7	38.7
P08 - Array Common Elements	0.7	6.8	7.5

Grand Total

86.9 244.4 331.3

Table 2: CTAO Cost Book Executive Summary

CTA Timeline

- 2016-2018 大口径望遠鏡 LST1 が最初のCTAサイトに建設される
- 2021-2022 Array配置、各国からの予算が決定され、CTAO ERIC が設立される。
- 2021-2024 CTA North にLST4基のアレイが建設・完成され、運用が開始される。
- ・ 2024-2028 14MSTs、37MSTs が 建設される。

	2020	202	1 2	022	2023	2024	2025	2026	2027	2028	2029	2030
Organization	CTAO g	CTAO gGmbH (Heidelberg)										
Organization					CTAO ERIC (European Research Infrastructure Consortium)							
						1						
Alpha Config	2020	202	1 2	022	2023	2024	2025	2026	2027	2028	2029	2030
Comissioning and Operation of LST1						I						
CDR			0	Deployment of LST2-4								
MST North	Design an	nd Finance	e	Constru				tion of 9MSTs			Observator	y Operation
Array config	ig, Finance		INI	ΞDA	С	construction and Deplyment of 14 MSTs						
CTA South	and CDR					Construction and Deployment of 37 SSTs						
Extension	2020	202	1 2	022	2023	2024	2025	2026	2027	2028	2029	2030
LST South			Advanced Design and Proto / Finance / CDR					Construction of 4LSTs			Operation	

telescope array CTA 国際宇宙ガンマ線天文台 LOI より

6. 実施時期

2016年より4基の大口径チェレンコフ望遠鏡をCTA 北サイト(スペイン・ラパルマ)に建設中。2023年に4基の大口径望遠鏡アレイを完成し、南半球の大口径望遠鏡建設を予算化し、全天観測を現実のものとしたい。

7. 必要経費および予算プロファイル

CTA 国際宇宙ガンマ線天文台の総建設費 320MEuro、運営経費 24MEuro/ 年であり、20年の運営を予定している。日本は建設費 66 億円、運営費 4 億円/年を予定している。

10. 実施内容

上で述べたように、CTA Consortium が実施機関・運用機関の中心であ り、大型国際共同で 31 カ国 1400 名の研究者からなる。 主要国は、ドイ ツ、イタリア、フランス、スペイン、日本の 5 カ国である。 日本グルー プ CTA-Japan は国際共同研究拠点・共同利用研である東京大学宇宙線研 究所を中心とし、22 機関 117 名の研究者からなる。

therenkov array LST1 observations and LST Science

cta

LST1 CTA サイトに設置された最初の望遠鏡

1000

800

600

400

200

2 55

2020年11月、カニ星雲の高精度観測 (LST1)

2020年12月、カニパルサーの高感度観測(LST1)

2020年12月、MAGIC+LST1の共同運用

運用 (世界最高感度達成)

Gamma Ray Horizon

cherenkov telescope

GRB: Simulated light curve (template: GRB080916C)

TeV-GRB 190114C observation with MAGIC Two Nature Papers 21. Nov. 2019

MAGIC Observation, GRB 160821B (Short GRB), published ApJ 2021

Major Atmospheric Gamma Imaging Cerenkov Telescopes

- □ Short GRB (T90 ~= 0.5 s) at z = 0.162, triggered by Swift-BAT
- Swift-XRT: t < 300 s extended emission + steep decay, t < 30 ks plateau?</p>
- □ HST: Kilonova feature, BNS merger
- **MAGIC: 24 s 4 hr**. Moon (3-9 x dark LoNS)
- □ 3.1 sigma (post-trial)
- □ At E ≥ 600-800 GeV

ロマルチメッセンジャー天文学への展望を開く

GRB 201015A (Long GRB) GCN 28659, >3sigma detection ICRC2021_797 Y. Suda et al.

Name/type of the alert: GRB 201015A Triggered by: Swift-BAT , T0=2020-10-15 22:50:13 UT Alert coordinates: RA=23h37m22.248s Dec=+53d23m35.520s (J2000) Alert arrival time: 2020-10-15 22:50:32 UT

Observation started 40 seconds after T0. GTC, z = 0.426

TITLE: GCN CIRCULAR

NUMBER: 28659

- SUBJECT: MAGIC observations of GRB 201015A: hint of very high energy gamma-ray signal DATE: 20/10/16 16:48:37 GMT
- FROM: Oscar Blanch at MAGIC Collaboration

 slanch@ifae.es>
- O.Blanch (IFAE-BIST Barcelona), M. Gaug (UAB Barcelona), K. Noda (ICRR University of Tokyo),
- A. Berti (INFN Torino), E. Moretti (IFAE-BIST Barcelona), D. Miceli (University of Udine and INFN Trieste),
- P. Gliwny (University of Lodz) S. Ubach (UAB Barcelona), B. Schleicher (University of Wuerzburg),
- M. Cerruti (University of Barcelona) and A. Stamerra (INAF Rome) on behalf of the MAGIC collaboration report:
- On October 15, 2020, the MAGIC telescopes observed GRB 201015A following the Swift-BAT trigger (D'Elia et al., GCN 28632). MAGIC started observations under good conditions about 40 seconds after the initial Swift
- MAGIC started observations under good conditions about 40 seconds after the initial Swift trigger, revealing a hint of signal with cignificance 23 cigns in the yory high opergy hand. Pofined off line analyses of the
- with significance >3 sigma in the very high energy band. Refined off-line analyses of the data are ongoing.
- Further MAGIC observations on GRB 201015A are planned in the coming night. We strongly encourage follow-up observations by other instruments at all wavelengths.
- The MAGIC point of contact for this burst is O. Blanch (blanch@ifae.es). Burst Advocate for this burst is M. Gaug (Markus.Gaug@uab.cat)
- MAGIC is a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes located at the Observatory Roque de los Muchachos on the Canary island La Palma, Spain, and designed to perform gamma-ray astronomy in the energy range from 50 GeV to greater than 50 TeV.

Avís -Aviso - Legal Notice - (LOPD) - http://legal.ifae.es <http://legal.ifae.es/>

MAGIC observation of GRB 201216C (long GRB), z = 1.10 most distant object >100GeV ICRC2021_838, A. Carosi et al.

energy range from 50 GeV to greater than 50 TeV.

Redshift Distribution from SWIFT GRBs W. J. Azzam et al. 2014

Simulated AGN Flares Template: the 2006 flare of PKS2155-304

□ Light curve can be examined, a few minutes scale structure → a few 10s of seconds
 □ Particle acceleration mechanism, Cooling process

□ Light curve vs. Energy dependence → Q.G. Energy scale > Planck Mass scale

LST1 による活動銀河核の観測 2020-2021Q1

- □ 近傍の活動銀河核 Mrk501, Mrk421, 1ES 1959+650
- □ 遠方の活動銀河 1ES0647+250(New), PG1553+113
- □ LSTによる観測を数億光年から 50億光年へ拡張
- □ 活動銀河核、ガンマ線バーストの観測を120億光年まで拡張観測を目指す(宇宙年齢137億光年)

Flat Spectrum Radio Quasars

- FSRQ is much brighter than HBL and LBL (3-4 orders of Magnitudes --- high accretion rate)
- Only 6 FSRQs are observed among about
 60 Blazars
- Useful to explore super massive black hole in the Early Universe

MAGIC observed 6 FSRQs

Source	<u>Redshift</u>	Discoverer	Year
3C 279	0.5362	MAGIC	2006
PKS 1510-089	0.361	HESS	2009
4C +21.35 (PKS 1222+216)	0. 432	MAGIC	2010
S30218+35	0.936	MAGIC	2014
S4 0954+65*	0.368	MAGIC	2015
PKS 1441+25	0.939	MAGIC	2015

* Classification is not clear, FSRQ/IBL/LBL

Multi Messenger Astronomy IC170922A / TXS 0506+056 HE ν : Star formation epoch?

Dark Matter Search Sensitive M_y: 200GeV - 10TeV

around 1/10 -1/20 M $\chi \rightarrow$ 20GeV-1TeV gamma

telescope array Status of CTA Project and LST Project

・ <u>2022年に、CTAO ERIC を設立</u>

- ・ 2025年に北半球が運用開始、2029年に南半球が運用開始
- ・ 南半球にLSTが必要 → Transients, GRBs, AGN Flares, 銀河ハローに暗黒物質探索
- ・ 日本の貢献は12% であり、バランスがよくない。 ドイツ26%、イタリア19%、 フランス17%、 スペイン13%であり、バランスがよくない。→ 観測時間に反映される
- ・ LST5-8の建設(2026年以降)により、日本の貢献度20%以上となる。
- ・ 2025年より LST1-4 運用開始(20GeV-3000GeVで世界最高)
 - Transient Sources、GW、PeV vとのマルチメッセンジャー観測が重要なターゲット
 - ・ GRB 観測、従来の10倍の頻度 → 高エネルギーガンマ線放射機構
 - ・ AGN 現在の10倍(Redshift z<2)、 Accretion powered/Spin Powered, Blazar の進化
 - ・ EBL, Inter Galactic Magnetic Field、Lorentz Invariance の高精度測定、
 - ・ 銀河ハローに暗黒物質探索
- ・ <u>LST South (LST5-8)</u> → 建設費 34億円、運用費 2+2億円/yr
 - ・ <u>暗黒物質 質量レンジ100GeV-3TeVで世界最高感度</u>
 - マルチメッセンジャー観測、GRB、AGN観測を倍増することができる
 - ・ Specific な天体 SgrA*、Cen A、NGC253 Star burst galaxy

Multi-messenger and Multi-wavelength Astrophysics cherenkov telescope

ASTRO-PARTICLE PHYSICS

Cosmic Ray Physics

High Energy Astrophysics

Wave AstroPhysics

array

ASTRO-PHYSICS

Gamma Ray Bursts, Black holes, Neutron Stars, Space and Time

PARTICLE PHYSICS Dark Matter, Neutrino Energy Frontier

IceCut

Particle Physics

IceCube Array 86 strings including 8 DeepCore strings 5160 optical sensors

DeepCore 8 strings-spacing optimized for lower energies

IceTop 81 Stations 324 optical sensors

Amanda II Array (precursor to IceCube

Eiffel Tov 324 m

Differential sensitivity (C.U.)