Overview: Super-Kamiokande and Super-K Gd

Takatomi Yano, ICRR, U-Tokyo.

ICRR young researcher's workshop, 5th Nov. 2021 Online

Super-Kamiokande

Features of SK detector

- Large water Cherenkov detector with 50kt ultra pure water, providing 22.5 kt fiducial volume.
- **1 km** under the Ikenoyama mountain in Japan (**2700 mwe**).
- ~11,000 of 20" PMT for inner detector (ID).
 - 40% photocathode coverage
 - SK-II: Half PMT and coverage
- 1885 of 8" PMT for outer detector (OD).
- Studying neutrinos from wide variety of sources.
 - Solar neutrino
 - Supernova neutrinos
 - Atmospheric/Accelerator neutrinos O(100) MeV to TeVs

O(1) to O(10) MeV

Super-Kamiokande history

Start of Super-

threshold 4.5

experiment

- From April of 1996, the Super-K accumulated **atm./solar** ν **events**, searched for **nucleon decay**, cooperated with ν **beam exp.** and made improvement over 20 years.
- After tank refurbishment work at 2019, Gadolinium sulfate is dissolved into SK tank water in the middle of 2020.
 - Aiming for first observation of **diffused supernova neutrino background (supernova relic neutrino)**.

Event Reconstruction -1-

Event Reconstruction -2-

charged

particles

erenkov

D: 39.3m

 e/μ neutrino CC interactions can be separated at higher energy events (>O(100)MeV).

• >99 % efficiency for e/μ separation.

Super-Kamiokande IV

T2K Beam Run 420076 Spill 2670320 Run 69641 Sub 958 Event 221184849 12-04-15:04:34:01 T2K beam dt = 1919.1 ns Inner: 2441 hits, 8460 pe Outer: 0 Mits, 0 pe Trigger: Dx80000007 D wall: 828.0 cm Evis: 1.0 GeV mu-like, p = 1041.6 MmSV/cCharge (pe)

Super-Kamiokande IV T2K Beam Run 410183 Spill 1879360 Run 69582 Sub 584 Event 137638206

e-like

12-03-19:01:30:02 T2K beam cit = 1360.3 ns Inner: 1763 hits, 3934 pe Outer: 5 hits, 4 pe Trigger: Dx8000000 D_wall: 930.0 cm e-like, p = 397_6 Mm57/c

Charge (pe) >26.7

> Figures are taken from: Laura Munteanu, ICHEP2020

0 nu-e decavs

1500

1000 500

Times (ns)

Super-Kamiokande Gadolinium Project (SK-Gd)

SK-Gd

- Dissolving Gd to Super-Kamiokande to significantly enhance detection capability of neutrons from v interactions
 - J. F. Beacom and M. R. Vagins, Phys. Rev. Lett. 93 (2004) 17110
- By coincidence method, low-energy anti-electron-neutrino interaction can be identified.

Physics target and status of SK-Gd

Physic targets

- Precursor of nearby supernova by Si-burning neutrinos
- Improve pointing accuracy for galactic supernova
- Discovery of Supernova Relic Neutrinos
- Others
 - Reducing proton-decay search background
 - Neutrino/anti-neutrino discrimination (for accelerator/atmospheric neutrinos)
 - Reactor neutrinos

Current status

- Gd loading towards 0.02% Gd₂(SO₄)₃ concentration was performed from July to August 2020.
 - About 50% of neutron would be captured by Gd, enhancing neutron tagging efficiency by 2-3 times.
 - Final target: 90% of neutron tagging
- Now, SK-Gd is in commissioning phase.

Schematic view of Gd loading to Super-K

Figures are taken from: http://www-sk.icrr.utokyo.ac.jp/sk/news/2020/08/sk-gd-detail-e.html

Detector status

- Water transparency
- Gd concentration uniformity
- Neutron tagging check by AmBe source

Water transparency

Light attenuation length measured with cosmic muons

Stable water transparency has been recovered few month after the loading

Gd concentration in SK tank

Gd uniformity check by AmBe

- Calibration with Am/Be : neutron + 4.4 MeV gamma-ray source
- Neutron capture signal after gamma-ray is obtained
- Expected time constant at 0.01% Gd concentration : **116 µ sec**

Plans

- Aiming to dissolve up to ~26 tons of additional $Gd_2(SO_4)_3 \cdot 8H_2O$ in 2022
 - Target Gd concentration: 0.03% (Currently 0.01%)
 - Gd capture efficiency: 75% (Currently 50%)

Current plan for the next Gd-loading

Final goal

Initial loading

Next target 0.03%

Б 40

Capture 0

Supernova neutrinos from 1987A

• The only detected SN neutrinos are from LMC(50kpc)

- The obtained binding energy is almost as expected, but large error in neutrino mean energy. No detailed information of burst process.
- We need energy, flavor and time structure.
- Supernova will be most interested target for Multi-messenger measurement with SK. $_{\scriptscriptstyle 13}$

Many models today. Need data!

- Recent multi-dimensional supernova simulations successfully reproduce SN explosion.
 - Several explosion mechanism (SASI, Rotation, Convection), EOS (soft/hard SN core)
- Difficulty: Neutrino oscillation in high density
 - MSW effect in much much higher density than that in SUN!, Collective effect (oscillation)

What if SN happens now? @Super-K

- SK's directional information is important for optical telescopes in the multi-messenger astronomy era.
- SNwatch: Real-time supernova neutrino burst monitor Astropart. Phys. 81(2016)39
 - In several minutes plots are generated automatically and auto-emails+ auto-phone calls follow

SN simulation @10kpc, Wilson (Totani1998) model

- Golden Alarm (Definition):
 - 60 events in 20sec
- The process time depends on the events
 - It takes about 10 minutes for the process of 10k events
 - Alarm will sent to SNEWS, IAU CBAT, ATEL, GCN. (< 1hour)
 - Quicker alert system is needed for covering type lb/lc stars.

Diffused Supernova Neutrino Backgrounds Supernova Relic Neutrino

- Neutrinos produced from the past SN bursts and diffused in the current universe.
 - ~ a few SN explosions every second $\rightarrow O(10^{18})$ SNe so far in this universe
 - Can study history of SN bursts with neutrinos

Physics of DSNB (SRN)

- Test of star formation rate
 - Factor ~2 discrepancy between rates of formations and SNe.
- Energy spectrum of SN burst neutrinos
 - Temperature inside the SN
- Extraordinary SN
 - BH formation, dim supernova

18

DSNB signal in SK

- Inverse beta decay channel is the probe for DSNB.
- Super-K holds the current best limits for the DSNB flux.
- Sensitivity limited by backgrounds
 - However, only one order magnitude above theoretical predictions.
 - \rightarrow (High efficiency and low background) Neutron tagging with Gd!

Inverse beta decay channel

D

 $\overline{\nu}_e$

DSNB sensitivity

• Assuming neutron tagging efficiency increased to >70% in 2022

Summary

- The first loading of Gd sulfate was done in summer 2020
- SK detector status after the first Gd loading:
 - Water transparency is good and stable
 - Gd concentration is uniform and stable
 - Aiming for the first observation of Diffuse Supernova Neutrino Background in 10 years.
- More Gd will be added in the next year
 - Target is 0.03% Gd concentration
 - Capture efficiency by Gd will be 75%
 - Low RI Gd sulfate production for the next loading has been started
 - Supernova detection
 - Better pointing accuracy (< 3degree) with 0.03% Gd concentration

Supernova neutrinos from 1987A

• The only detected SN neutrinos are from LMC(50kpc)

- The obtained binding energy is almost as expected, but large error in neutrino mean energy. No detailed information of burst process.
- We need energy, flavor and time structure.
- Supernova will be most interested target for Multi-messenger measurement with SK. 23

Many models today. Need data!

- Recent multi-dimensional supernova simulations successfully reproduce SN explosion.
 - Several explosion mechanism (SASI, Rotation, Convection), EOS (soft/hard SN core)
- Difficulty: Neutrino oscillation in high density
 - MSW effect in much much higher density than that in SUN!, Collective effect (oscillation)

What if SN happens now? @Super-K

- SK's directional information is important for optical telescopes in the multi-messenger astronomy era.
- SNwatch: Real-time supernova neutrino burst monitor Astropart. Phys. 81(2016)39
 - In several minutes plots are generated automatically and auto-emails+ auto-phone calls follow

SN simulation @10kpc, Wilson (Totani1998) model

- Golden Alarm (Definition):
 - 60 events in 20sec
- The process time depends on the events
 - It takes about 10 minutes for the process of 10k events
 - Alarm will sent to SNEWS, IAU CBAT, ATEL, GCN. (< 1hour)
 - Quicker alert system is needed for covering type lb/lc stars.

Pointing accuracy

- Advantage of WC detectors
 - Inverse beta events are useless
 - Excess of elastic scattering events

30 Water detectors \overline{v}_{e} 20 ve+r $+e^- \rightarrow \nu + e^$ v_e 0.25 0.5 60 vents/bln Totani1998 50 $\overline{v}_e p \rightarrow e^+ n$ 7300 40 $v + e^{-} \rightarrow v + e^{-}$ 30 320

 BG reduction by neutron tagging $\circ \rightarrow SK-Gd$

110

¹⁶O CC

Pointing accuracy ~5° @10kpc SN

SK-Gd pointing accuracy

• $\overline{v_e}$ events can be tagged and rejected, and directional events $(v_e + e \text{ scattering events})$ are enhanced.

Impact of SK-Gd

Nakamura, Horiuchi et al., MNRAS, 461, 3296 (2016)

Pre-supernova signals

- Precursor signal from Si-burning is detectable with SK-Gd
 - Pre-SN's $\boldsymbol{\nu}$ energy is lower than SN's
 - Gd loading is essential.

Odrzywolek & Heger, 2010

Diffused Supernova Neutrino Backgrounds Supernova Relic Neutrino

- Neutrinos produced from the past SN bursts and diffused in the current universe.
 - ~ a few SN explosions every second $\rightarrow O(10^{18})$ SNe so far in this universe
 - Can study history of SN bursts with neutrinos

Physics of DSNB (SRN)

- Test of star formation rate
 - Factor ~2 discrepancy between rates of formations and SNe.
- Energy spectrum of SN burst neutrinos
 - Temperature inside the SN
- Extraordinary SN
 - BH formation, dim supernova

30

DSNB signal in SK

- Inverse beta decay channel is the probe for DSNB.
- Super-K holds the current best limits for the DSNB flux.
- Sensitivity limited by backgrounds
 - However, only one order magnitude above theoretical predictions.
 - \rightarrow (High efficiency and low background) Neutron tagging with Gd!

Inverse beta decay channel

D

 $\overline{\nu}_e$

DSNB sensitivity

• Assuming neutron tagging efficiency increased to >70% in 2022

Summary

- Super-K is starting new experimental phase, Super-K Gd.
 - Neutrino/Anti-neutrino separation of high efficiency neutron tagging.
 - Gd loading is started at July 2020.
- Super-K Gd will provides more pointing accuracy and a new early warning system for supernova burst neutrinos.
 - Aiming for the first observation of Diffuse Supernova Neutrino Background in 10 years.
- Hyper-K has been funded and started to construct.
 - The observation will be started in 2027.
 - Supernova neutrino detections are important target for SK/HK.
- Other astrophysical source, solar neutrino, indirect DM, GW and Blazer follow-up will be also continued with SK/HK.