Introduction to Cherenkov experiments

M. Ohishi (ICRR, U-Tokyo)

2022/03/24

Ground-based γ -ray observation: high energy end of the photon observation

2022/03/24

Workshop "Synergies at new frontiers at gamma-rays, neutrinos and gravitational waves" @ICRR Imaging Atmospheric Cherenkov Telescope

2

Imaging Atmospheric Chererenkov Telescopes: low energy end of the air shower detectors

✓ Particle identification (γ or not) is more difficult in indirect observations → higher background level due to charged cosmic rays

Evolution of γ-ray observations with ground-based detectors including IACTs: Kifune-plot

Figure from https://github.com/sfegan/kifune-plot by Stephen Fegan

Evolution of γ-ray observations with ground-based detectors including IACTs: Kifune-plot

Figure from https://github.com/sfegan/kifune-plot by Stephen Fegan

TeV γ-ray source catalog

TeVCat <u>http://tevcat.uchicago.edu/</u>

The flux level of the faintest source detected : ~ 0.003 Crab (0.3% Crab)

2022/03/24

TeV γ-ray source catalog

As of 2022Mar:

55 HBL(High-frequency peaked BL Lac)s, 34 PWNe (6 discovered by Milagro/HAWC), 76 unidentified sources (37 discovered by Milagro/HAWC/LHASSO) 6 GRBs...

2022/03/24

TeV γ-ray source catalog

2022/03/24

Ground-based γ-ray detectors

Ground-based Gamma-ray Astronomy @ ICRC 2021

Ground-based γ -ray detectors (2)

MAGIC/VERITAS/H.E.S.S.

 $\frac{\text{MAGIC}}{\text{Dia. 17 m} \times 2 \text{ tels}}$ 2,200 m a. s. l.

<u>VERITAS</u> Dia.12 m x 4 tels 1,260 m a. s. l.

<u>H. E. S. S.(-II)</u> Dia. 12 m x 4 tels + Dia. 28 m^{*1} tel 1,800 m a. s. l.

*1 32.6 m x 24.3 m,
 equivalent
 to φ 28 m

11

2022/03/24

Ground-based γ -ray detector: role-sharing North and South

Figure from http://tevcat.uchicago.edu/

Ground-based γ-ray detector: role-sharing North and South

H. E. S. S. galactic plane survey (2018)

A decade observations of TeV Blazar 1ES 1215+303 (Valverde+ 2020)

Workshop "Synergies at new frontiers at gamma-rays,

neutrinos and gravitational waves" @ICRR

Small difference in design concept

galactic sources \rightarrow extended \rightarrow wide FOV cameraextragalactic sources \rightarrow compact, soft spectra \rightarrow narrower FOV camera (with a large reflector)

FOV size: (South) HESS 5.0 deg, (North) VERITAS 3.5 deg, MAGIC 3.5 deg

2022/03/24

Indirect/direct, IACT/surface particle detector comparison

	Fermi	(3 rd gen.) IACTs	Surface particle detectors
Energy Range	20 MeV – 200 GeV	100 GeV - 50 TeV	400 GeV - 100 TeV
Field of View	4π /5 (2.5) sr	5° x 5 ° 6 × 10 ⁻³ (sr)	4π /6 (2.1) sr
Duty factor	80%	~ 15%	> 90%
Angular resolution	< 0°.15 (> 10 GeV)	0°.07	0°.5
Energy resolution	5-10 %	15-20%	~50 %
Effective Area	0.8 m ² (on-axis)	~ 1 × 10 ⁵ m ^{2 *1}	6 × 10 ⁴ m ^{2 *2}
Figures in dark blue taken from "Introduction to Particle and Astroparticle Physics" De Angelis & Pimenta			

*1 @1 TeV, 10m x 4 system *2 Tibet-AS array case

2022/03/24

Workshop "Synergies at new frontiers at gamma-rays,

neutrinos and gravitational waves" @ICRR

Indirect/direct, IACT/surface particle detector Comparison Observations of time transients

	Fermi	IACTs	Surface particle detector
Field of View	4π /5 (2.5) sr	5° x 5 ° 6 × 10 ⁻³ (sr)	4π /6 (<mark>2.1</mark>) sr
Duty factor	80%	~ 15%	> 90%
Effective Area	0.8 m ² (on-axis)	~ 1 × 10 ⁵ m ^{2 *1}	6 × 10 ⁴ m ^{2*2}

Observations of transient objects by IACTs

 \rightarrow

follow-up observations with information given by other wide FoV detectors (if conditions are met)

Indirect/direct, IACT/surface particle detector comparison Observations of time transients

	Fermi	IACTs	Surface particle detector
Field of View	4π /5 (2.5) sr	5° x 5 ° 6 × 10 ⁻³ (sr)	4π /6 (<mark>2.1</mark>) sr
Duty factor	80%	~ 15%	> 90%
Effective Area	0.8 m ² (on-axis)	~ 1 × 10 ⁵ m ^{2 *1}	6 × 10 ⁴ m ^{2*2}

Observations of transient objects by IACTs

 \rightarrow

follow-up observations with information given by other wide FoV detectors (if conditions are met)

Trigger rate drop by passing clouds

Indirect/direct, IACT/surface particle detector comparison Observations of time transients

	Fermi	IACTs	Surface particle detector
Field of View	4π /5 (2.5) sr	5° x 5 ° 6 × 10 ⁻³ (sr)	4π /6 (<mark>2.1</mark>) sr
Duty factor	80%	~ 15%	> 90%
Effective Area	0.8 m ² (on-axis)	~ 1 × 10 ⁵ m ^{2 *1}	6 × 10 ⁴ m ^{2*2}

Observations of **transient** objects by IACTs

follow-up observations with information given by other wide FoV detectors (if conditions are met)

Night time

Good weather

Moon is low

Proper AzlEl

range

Indirect/direct, IACT/surface particle detector comparison

	Fermi	IACTs	Surface particle detector
Field of View	4π /5 (2.5) sr	5° x 5 ° 6 × 10 ⁻³ (sr)	4π /6 (<mark>2.1</mark>) sr
Duty factor	80%	~ 15%	> 90%
Effective Area	0.8 m ² (on-axis)	~ 1 × 10 ⁵ m ² @1 TeV	6 × 10 ⁴ m ² (Tibet AS case)

Exposure $S \cdot \Omega \cdot T$ (or duty factor) As for IACTs:

- $S \rightarrow large enough$
- $\Omega \rightarrow \text{significantly small}$
- $T \rightarrow$ relatively small

Difference in effective area : direct and indirect 10 – 100 GeV region Figure from

 IACT's large collection area effectively works for a strong γ-ray emission in a short duration (which you expect for very eneegetic phenomena)

IACT γ-ray detection principle

IACT γ-ray detection principle:reconstruction

IACT γ -ray detection principle:reconstruction

gamma-rays, neutrinos and gravitational

waves" @ICRR

2022/03/24

23

IACT γ -ray detection principle: γ /hadron separation

IACT γ-ray detection principle : γ/hadron separation

waves" @ICRR

IACT γ-ray detection principle γ/hadron separation

Light pool patterns on the ground ^{CO}_{2,}

CORSIKA 7.74, 2,000m a. s. l.

Light-pool photon density fluctuates event to event, caused by the variation in the first interaction height (limiting energy resolution)

Cherenkov photon angle distribution

Impact parameter d = 70 m, photon collection area radius = 10 m γ 300 GeV p 1 TeV (ged) × 2.5 2.5 × (qed) -150 100 2 2 40 80 1.5 1.5 30 60 0.5 0.5 20 40 0 0 -0.5-0.520 10 -1 -1.5 -1.5 -1.5 -1.5 0.5 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 1 1.5 2 y (deg) y (deg) Superposition of sub-structures: Single electromagnetic shower sub-EM showers • μ-ring \rightarrow One elongated ellipse • µ-arc

Cherenkov photon angle distribution

In the observation data:

- + finite point spread function (PSF) of the reflector
- + finite pixel-size of the imaging camera at the focal plane
- + noise: night sky background (starlight, moonlight etc.)
- + noise: electric noises

Cherenkov photon incident angle distribution

- Both γ and e⁻(e⁺) form electromagnetic shower (difference in the first interaction, but the rest is same)
 - \rightarrow basically indistinguishable on event-by-event basis
 - \rightarrow Irreducible CR background

Conditions which determine γ -ray sensitivity of an IACT system

• Minimum number of signal events ($N\gamma \ge 10$)

$$N_{\gamma} = F_{\gamma} A_{0\gamma} \epsilon_{\gamma} t \ge 10 \quad \Longrightarrow \quad F_{\gamma} = \frac{1}{A_{0\gamma}} \frac{1}{\epsilon_{\gamma}} N_{\gamma} t$$

• Significance to the background events ($N\sigma \ge 5$)

$$N_{\sigma} = \frac{1}{\sqrt{1+\alpha}} \frac{N_{\gamma}}{\sqrt{N_B}} = \frac{1}{\sqrt{1+\alpha}} \frac{F_{\gamma}A_{0\gamma}\epsilon_{\gamma}t}{\sqrt{F_B}A_{0B}\epsilon_B\Omega t} \ge 5$$

$$\underset{Value}{\overset{\text{Literature}}{\longrightarrow}} F_{\gamma} \stackrel{Value}{=} \sqrt{F_B} \frac{\sqrt{A_{0B}\Omega}}{\sqrt{F_B}} \sqrt{\epsilon_B}}{\sqrt{1+\alpha}N_{\sigma}t^{-1/2}}$$

• Signal to background ratio ($N_{\gamma}/N_{B} \ge 0.05$)

$$R_{\gamma B} = \frac{N_{\gamma}}{N_B} = \frac{F_{\gamma} A_{0\gamma} \epsilon_{\gamma}}{F_B A_{0B} \epsilon_B \Omega} > 0.05 \qquad F_{\gamma} = F_B \frac{A_{0B} \Omega}{A_{0\gamma}} \frac{\epsilon_B}{\epsilon_{\gamma}} R_{\gamma B}$$

Workshop "Synergies at new frontiers at gamma-rays, neutrinos and gravitational waves" @ICRR Simulation

efficiency in the analysis

settina

-1

Cherenkov Telescope Array (CTA)

https://www.cta-observatory.org/

32

- CTA array consists of 3 types of telescopes (LST, MST, SST) to cover 20 GeV to 300 TeV energy range
- LST (φ 23m, 20 GeV 3 TeV), MST (φ 12m, 80GeV 50 TeV), SST (φ 4.3m, 1 TeV - 300 TeV)

Array configuration for the current public IRFs

"Alpha configuration" : first construction phase

These figures and instrument response functions (IRFs) are public on Zenodo: <u>https://zenodo.org/record/5499840#.YihE73_P1hF</u>

Array configuration for the current public IRFs

These figures and instrument response functions are public on Zenodo: <u>https://zenodo.org/record/5499840#.YihE73_P1hF</u>

Sensitivity curve for various IACTs and ground-based γ -ray observatories

Sensitivity and observation time relation: (10-year scale)

*Array configuration for this plot is different from the current, but relation between observation time and sensitivity shows same feature

* Detector configuration (as of 2013) is different from the one in the previous page

2022/03/24

Sensitivity curve and dominant conditions

CTA Instrument Response Functions public at Zenodo (Prod5 ver v0.1) :

https://zenodo.org/record/5499840#.YjiDQ-rP1D9

Summary

- γ-ray observations with IACT have been continuously developed over the past 30 years, more than 200 objects have been discovered by IACTs.
- It can achieve lower energy thresholds (currently 20 GeV) than surface particle detectors, but its small field of view makes it essential to cooperate with a wFoV detector for observations of transient objects.
- IACT observations can only be performed in clear and moon-less nights, forming a network consists of multiple observatories with different longitude/latitude is meaningful.
- The most important factor to determine the IACT sensitivity curve is background rejection capability. To improve sensitivity, development of new hardware/software and building accurate Monte Carlo simulation are ongoing.

2022/03/24

Backup

Common requirements for the IACT detectors: Optics and imaging camera pixel size

- Cherenkov photon density of 100 GeV γ at 2,000m \rightarrow 10 photons/m²
- ~ 100 photo-electrons (multiplied mirror reflectivity and Q. E. of the photo-detector) is required for a reasonable image analysis
- Optical PSF and camera pixel-size ← need to distinguish EM shower and hadronic shower
- EM shower itself has a finite extension (σ =0°. 05) \rightarrow Optical PSF smaller than σ = 0°.05 and pixel size of $\phi \sim 0^{\circ}$.1
- Practical solution of the reflector design \rightarrow tessellated reflector with spherical segmented mirrors

Background estimation : ON - OFF

- "γ-like event list" ≠ "photon list It includes a significant number of irreducible, misidentified charged cosmic-ray events
- Estimation of background level is essential
- In many cases OFF region data is used to estimate BG level

Workshop "Synergies at new frontiers at gamma-rays, neutrinos and gravitational waves" @ICRR (Berge+, 2007)

γ/hadron separation in the analysis - Hillas parameter-based analysis -

- Characteristics extraction of air shower images using 2nd/3rd moment
- *WIDTH* : lateral size of an EAS, *LENGTH* : longitudinal size of an EAS
- Simple but robust and worked well in the IACT experiments in early stage
- Hillas parameters show dependence on core distance (impact parameter) and Size (Aharonian+ 2006, H.E.S.S. Crab) (total p. e. in the image)

 → corrected Hillas parameters (Mean Reduce Scaled Width etc.) describes characteristics of an EAS better

(b)

Workshop "Synergies at new frontiers at gamma-rays, neutrinos and gravitational waves" @ICRR

MRSW

MRSW

γ/hadron separation in the analysis - machine learning classification -

- Current popular analysis approach implementation is different for each group: MAGIC → Random Forest (RF) VERITAS → Boosted Decision Tree (BDT)
- With signal and background data samples, the machine learning scheme is trained to separate two data samples best (classification)
- Multiple input parameters, single output parameter (*hadroness*, or *gammaness*)
- Choice of input parameters is also different for each group (Hillas parameters, corrected Hillas parameters, pixel charge, etc.)
- There are two choices for BG training sample:
 - MC hardon \rightarrow suffers from uncertainties in hadronic interaction
 - Real CR data → discrepancy between MC setting and real (atmosphere and hardware condition)

γ/hadron separation in the analysis - template likelihood -

- Search for a best-fit image from a database of γ-ray shower images for various conditions (impact parameter, energy, incident angle, etc.)
- Shower reconstruction and evaluation of gammaness (goodness-of-fit) is performed simultaneously
- Only γ-ray is needed for MC
- Used in H.E.S.S. and showed better results than Hillas-parameter based analysis
- Computing resource consumption for creating database and best-fit image search is relatively high

Importance of Monte Carlo simulation accuracy

- Precise matching between Monte Carlo simulation data and real data is essential for IACT experiments
- There are numerous parameters to be tuned in MC
- Some of them are variable on run by run (day by day) basis:
 - Atmosphere condition
 - Night sky background
 - Telescope optical throughput
 - Telescope pointing accuracy
- Using various monitor data and info from supplemental devices (LIDAR, skymonitor camera, etc.), there parameters are supposed to be properly tuned for each data run

Conditions which determines γ -ray sensitivity of an IACT (CTA) case : E> 10 TeV

- Gamma/hadron separation in this energy band by IACT is excellent
 - → Number of signal event
 (Nγ≥ 10) limits the sensitivity
- Large exposure is needed
- Overlapping energy range with surface particle detectors (their detectors have high duty factor)

Workshop "Synergies at new frontiers at gamma-rays,

Conditions which determines γ -ray sensitivity of an IACT (CTA) case : A few TeV to 10 TeV

- Li&Ma significance is the dominant condition and major background is CR proton
- More reduction of hadron component may improve the sensitivity, but Nγ limit is also close

Conditions which determines γ -ray sensitivity of an IACT (CTA) case : 100 GeV to a few TeV

- Li&Ma significance is the dominant condition and major background is CR electron
- Basically CR electrons are irreducible background for IACT gamma observation
- New-type detector will be needed in the future improvement of the sensitivity

Workshop "Synergies at new frontiers at gamma-rays,

Conditions which determines gamma-ray sensitivity of an IACT (CTA) case : E< 100 GeV

- S/B ratio determines the sensitivity, thus extension of observation time does not improve the sensitivity
- Major background is CR proton again
- Effort to improve γ/hadron separation efficiency is essential (in software or hardware) in this energy band

Workshop "Synergies at new frontiers at gamma-rays,

neutrinos and gravitational waves" @ICRR

Energy resolution and angular resolution from detection principle

Statistical fluctuation in the image	Threshold effects	
Fluctuation in the shower		
development	Image truncation	
Errors in the core position reconstruction	Systematic errors (between Real and MC)	

Angular resolution limiting factors

(Hofmann 2006)

Indirect CR experiments

Proton-induced shower images in IACTs

- EASs from cosmic-ray protons : sub-structures
 - **EM sub-showers** from π⁰
 - **Muons** from π^{\pm}

LSTCam

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

-1.0

-0.5

0.0

-1.0

-0.5

0.0

LSTCam

Wide variation in observed images

Cherenkov Image samples for 1 TeV proton

z: 0 deg, Impact Parameter : 120 m, first interaction height : 20km, target nucleus: Nitrogen (all fixed)

Schematic diagram of a proton-

Proton-induced shower images in IACTs

LSTCam

max E pi0: 708 GeV

LSTCam

max E pi0: 689 GeV

orkshop

gamma-ravs

800

700

600

500

400 300

200

100

600

500

400

300

200

waves" @ICRR

- Previous studies on nature of y-like proton events: • Maier+ (2007), Sitarek+ (2018), Sobczyńska (2008, 2015) etc.
- Emission of **energetic** $\pi^{0} \rightarrow \gamma$ -like shower •

LSTCam

max E pi0: 791 GeV

LSTCam

max E pi0: 700 GeV

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

Rate of γ -like events depends on π^0 spectrum

High max $E_{\pi 0}$ image samples for 1 TeV proton

z: 0 deg, Impact Parameter : 120 m, first interaction height : 20km, target nucleus: Nitrogen (all fixed)

500

400

300

200

100

700 600

500

400

300

200

1.0

0.5

10

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

