Search for GRB neutrinos at SK (and HK)

M.Ikeda (ICRR) 2022.3.25

SYNERGIES AT NEW FRONTIERS AT GAMMA-RAYS, NEUTRINOS AND GRAVITATIONAL WAVES

Institute for Cosmic Ray Research (ICRR) Tokyo, Japan

24 - 25 MARCH 2022

Contents

- GRB MeV neutrino search at SK
 - Prog. Theor. Exp. Phys. 2021, 103F01
- Higher energy search
- Prospect : SK-Gd and HK
- Summary

Super-Kamiokande detector

k	Kamioka mine ~3km (2700	~1km ~2km mwe)	Article and a second and a seco	And
Phase	Period	Fiducial vol. (kton)	# of PMTs	Energy thr.(MeV)
SK-I	1996.4 ~ 2001.7	22 F	11146 (40%)	4.5
SK-II	2002.10 ~ 2005.10	22.5	5182 (20%)	6.5
SK-III	2006.7 ~ 2008.8	22.5 (>5.5MeV) 13.3 (<5.5MeV)		4.5
SK-IV	2008.9 ~2018.6	22.5 (>5.5MeV) 16.5 (4.5 <e<5.5) 8.9 (<4.5MeV)</e<5.5) 	11129 (40%) (coverage)	3.5 (Kin. energy)

GRB observations and SK operation

- More and faster information from satellite observations
 - Help (under)ground based follow up observations
 - Include : host galaxy, afterglow light curve
 - We can perform more detailed analysis fluence limit for long GRBs and short GRBs
- Gamma-Ray Candidate Network (GCN) is available to get such information

GRB data base

GCN database prepared by ICECUBE group →GRB web (all event, 2008-) (Thanks to M.Tanka san for his advice)

- Analys period : 2008/12/7-2017/3/31
 - Total 2208 GRB in SK physics runs
 - Duration (t90) is available
 2136 GRBs (323 short/ 1813 long)
 - GRB start/stop time are available 2194GRBs

RBweb by P. Coppin Incluzes to view the full table (only the find 1000 lines are shown). Incluzes to download this table as a text file. Incluze to access anchived versions of the summary table. Soster: If the GRB_mane is followed by an statesis (1), then the GRB does not appear with a GOI-style name in the literature. These GOI-style names were hence auto-generated by GRBwe

GRB_name	GRB_name_Fermi	TO		ded	pos_error	T90	T90_error	T90_start	fluence	fluence_error	redshift	'T100'	GBM_locat	ted mjd (TO)
			°, J2000	°, J2000	°, 1-sigma				erg/cm^2	erg/cm*2				day
4														
GRB220320A*	GRB220320194	439:54.512	96.9100	-53.5400	-	19.9680	0.3620	4:39:56:304	4.3114e-05	6.9759e-08	-	21.7600	True	59658.19438093
<u>GR8220319A</u>	***	17:40:33	218.2242	61.2950				-	-	-	-	-	False	59657.73649306
<u>GR8220317A</u>	GRB220317534	12:48:23.496	171.9600	-11.2800	9.205260	14,3360	3.4820	12:48:23.496	6.7312e-07	2.2325e-08	÷	14.3360	True	59655.53360528
<u>GRB220316A*</u>	GRB220316476	11:25:37.875	222.9100	41.9600	5.285599	48.1290	0.5720	11:25:38:451	6.4669e-06	2.6915e-08	-	48.7050	True	59654.47613281
<u>GRB220315A</u>	GRB220315101	2.25:56	236.0900	-76.8200	4.439885	0.7680	0.6680	2:25:56.619	4.1031e-07	2.1466e-08	-	1.3870	True	59653.10134259
GRB2203144*	GR8220314898	21:32:56.436	174.8400	1.1000	4.484832	30.4650	1.2800	21:32:56.436	7.2787e-06	7.3995e-08	1	30.4650	True	59652.89787542
<u>GR8220311A</u>	GRB220311690	16:33:10	157.9747	66.0819	-	10.4960	1.9500	16:33:12.257	1.2482e-05	4.30468-08	÷	12.7590	False	59649.68969907
<u>GR8220310C</u>	GRB220310933	22:23:48:355	289.9580	40.2093	-	16.3840	4.7000	22-23-48.355	7.1838e-07	6.0341e-08	-	16.3840	False	59648.93319855
GR82203108	GRB220310122	2:55:07	63.8300	69.5800	4.135865	5.3760	0.4530	2:55:07.739	1.4564e-06	3.1142e-08	-	6.1150	True	59648.12160880
000000000		0.07-57	100 1017	22.2522									Falsa	C05/0 010/0071

https://user-web.icecube.wisc.edu/~grbweb_public/Summary_table.html

Home v Data v Description Precursors Co

Analysis overview (MeV neutrino search)

Summary of reduction

- First reductions
 - FV cut and other noise cuts
 - ~70% efficiency
- Second reductions
 - Solar nu BG (~ 20MeV)
 - Cut solar direcition
 - Spallation BG (~ 20MeV)
 - Check correlation with all muons within 30sec
 - Atmospheric nu BG (higher energy)
 - Pion / muon like events
 - Hit pattern
 - Events with sub events
 - Hit pattern and hit timing

Fixed time window analysis

• Check ± 500 sec around individual GRB

Background rate is obtained from the sideband (± 1000 sec) : 0.114 event/1000sec Number of observed SK events agree with the Poisson distribution of BG rate \$

3 events due to spallation products...

We also confirmed that positional correlation with the parent muons

Variable timing window analysis

The length of search time window is different for each GRBs

- GRB's start time and stop time is available
 - 2194 GRBs
- Start (t_s) and stop (t_e) time:
 - O(0.1sec) to O(1000 sec)
 - Let' search events within the time window

Events in the individual time window

 $\text{ } \mathbb{R} P_{\text{Nev}}$: *N*_{ev} events to be observed in (*t*_e - *t*_s) sec with a Poisson distribution of the average background rate of 0.114 events per 1000 s.

Statistical test with toy MC

- From the observed BG rate, we have simulated 10000 sets of 2194 GRBs (with real $t_e\text{-}t_s$) and checked P_{Nev} as it's done for data

Therefore, the result (previous page) is not statistically significant. 12

Stacked data analysis

- Sum neutrino candidate events for all 2208 GRB
 - Signal window +/- 500 sec of GRB timing
 - Background window +/- 1000 sec (500 sec out side of signal window)

Fluence upper limit

Total fluence < 1.12x10⁸ cm⁻²/2208GRBs = **5.07 x 10⁴ cm⁻²/GRB**

- 8MeV to 100 MeV
- Assuming a flat spectrum at GRB
- For 189 GRBs, distance is available in the database.
 - Limits on the total energy carried away from the source by neutrinos can be calculated.
 - Assuming neutrino emission at the source is isotropic

Fluence vs. energy

- Fluence limit per GRB is calculated as a function of energy.
- For each energy point(E), the number of candidate events with energy $\pm 3 \sigma_{\rm E}$ around the point is counted.
- Limits for short and long GRBs are also calculated in the paper.

Higher energy GRB neutrino search

- Search of 100 MeV 10 TeV using data from SK1-4 (more than 20year).
- Use GRBweb
 - 3864 GRBs found during the period
- The correlation between nu direction and event direction is strong.
 - Look for events within 15 degree to GRB direction
- We have 3 categories depending on neutrino energy

Atm. nu background estimation

At high energy, atmospheric neutrino BG is dominant BG source.

Data and MC shows good agreement

Event rate [×10 ⁻⁵ /sec]	Data	МС		
FC	9.44±0.05	9.43		
PC	0.72±0.02	0.74		
UPMU	1.60±0.04	1.57		

Energy threshold for each category

Results:

- Count number of candidates with
 - ± 500 sec of GRB time
 - Difference between the reconstructed direction and GRB direction $<15^\circ$
 - (Only for UPMU) z direction of GRB < 0
- No significance observed

	# of GRBs	Data	Expected BG
FC	3737	2±1.4	<mark>0.77</mark>
PC	3737	0	<mark>0.48</mark>
UPMU	1737	1±1.0	0.76

90% C.L. fluence upper limit

20

Super-Kamiokande Gd project just started

Physics targets of SK-Gd:

- (1) Discovery of Supernova relic neutrino (SRN)
- (2) Galactic supernovae (pointing accuracy, and Si-burning v)
- (3) Reduction of BG for proton decay, solar v, or reactor v, GRB v
- (4) Neutrino/anti-neutrino discrimination

Prospect of SK-Gd (MeV v search)

- Below 15 MeV:
 - Dominant BG is spallation product
 - With IBD tag, only Li9 will remain.
 - ~ 2 events/year is expected
- Above 15 MeV:
 - Dominant BG is atmospheric nu
 - With IBD tag, $\sim 1/4$ of current BG
- Expected sensitivity after 10 years observation with SK-Gd. Improvement from current limit
 - Below 15 MeV : ~ 1/6
 - Above 15 MeV : ~ 1/2

Hyper-Kamiokande

- Target : SK × 8
- Below 15 MeV:
 - Overburden ~ 600m (SK:1000m)
 - Spallation product density~SK \times 3
 - Spallation BG : \sim SK \times 8 \times 3
 - See more detail for HK design report https://arxiv.org/pdf/1805.04163.pdf
- Above 15 MeV:
 - Atmospheric BG : ~SK × 8
- Expected sensitivity after 10 years observation with HK Improvement from current limit
 - Below 15 MeV : $\sim \sqrt{8 \times 3}/8 \sim 60\%$
 - Above 15 MeV : ~ $\sqrt{8}/8$ ~35%

Fiducial volume : ~ SK \times_{48}

Summary

- GRB search with SK.
 - O(10MeV) ; No significant signal found
 - O(100MeV-10TeV); No significant signal found
 - Improved upper limits are obtained.
- Future prospect
 - SK-Gd: Spallation BG will be reduced a lot.
 - HK: Large improvement especially at higher energy region.