THE UNIVERSITY OF TOKYO (POSTDOC FELLOW@KIAA SINCE JULY 2022)

SUPPORTED BY KAKENHI NO.20J12200

MULTI-MESSENGER DETECTABILITY OF NEUTRON STAR MERGERS AND GAMMA-RAY BURSTS

HAOXIANG LIN (林浩翔)

LIN HAOXIANG

Multi-messenger (MM) detection of binary neutron star (BNS) mergers

- What we already saw from GW170817
 - Gravitational waves, short GRB + afterglow, Kilonova
 - X-ray excess 3.5 yr later (Hajela+22, ApJL, 927, L17)
- Other potential messengers of interest
 - Very-high-energy gamma-rays (this work)
 - Neutrinos (very difficult on current sensitivity)
 - Cosmic rays (e.g. Galactic remnant; Kimura+18, ApJ, 866, 51)
 - sGRB precursor, extended/plateau emission from remnant activities
 - Fast radio bursts? (e.g. Totani, 13, PASJ, 65, 12)

CREDIT: NIELS BOHR INSTITUTE

2

Very-high-energy (VHE) photon detections from 6 GRBs, including 1 sGRB*

- Challenge of particle acceleration model and GRB theory (e.g. GRB 190829A)
- Potential counterpart of GW events (GW170817 + sGRB 170817A)
- Multi-messenger prospect by future Cherenkov projects (e.g. CTA, LHAASO, SWGO)

Multi-messenger detection prospect of BNS merger with CTA

CTA can ideally scan over GW region in ~ min timescale (Bartos+19, MN, 490, 3476)

LIN HAOXIANG

З

A caveat in MM detectability: Malmquist bias

Say, two neutron star merge and release GWs and a GRB, then because of their common **dependency** on e.g. BNS inclination

$Pr(GW \cap GRB) \neq Pr(GW) \times Pr(GRB)$

What results from this dependency is **non-trivial** and significantly affects **joint detection rate** $Pr(GW \cap GRB) = Pr(GW) \times Pr(GRB | GW)$ $\approx 3.4 \times Pr(GW) \times Pr(GRB)$

will be 1.26 times the search threshold. For binary systems, I also derive the universal pdf for detected values of the orbital inclination, taking into account the Malmquist bias; this implies that the number of gamma-ray bursts associated with detected binary coalescences should be 3.4 times larger than expected from just the beaming fraction of the gamma burst. Using network antenna patterns, I propose three figures of merit

This bias is frequently ignored in MM detection rate study.

By Bayesian conditional probability

By Schutz, 2011, CQGra, 28, 125023

4

A caveat in MM detectability: Malmquist bias $Pr(GW \cap GRB) \approx 3.4 \times Pr(GW) \times Pr(GRB)$

Moreover, this factor may not be the final answer yet:

- GRB was assumed always detectable on-axis and invisible otherwise, ulletinconsistent with GRB 170817A which was detected off-axis
- No discussion for latency time between GW and GRB •
- Cosmological evolution of GRB/BNS rate ignored
- Binary polarization angle was ignored (minor) ●

We need to carefully improve the formulation to allow general discussion.

Population model of MM detectability

Let's simulate a large sample of population. The parameters of population (e.g. orientation, burst and observation) follow prior distributions \mathcal{P}_{χ} . We quantify the detection probability as the number fraction that meets **MM detection criteria**:

$Pr(criteria) \equiv$

A source is MM detectable, if it stays within the **minimum visibility distance** \mathcal{D}_{v} at which all messengers of interest are visible:

criteria : $D_L < D_v$

$$\equiv \int_{\operatorname{criteria}(X)} \mathscr{P}_X dX$$

 $X = \{\theta, \phi, \psi, \iota; E_{iso}, n_{ISM}, \theta_{iet}, \dots; D_L, F_{sen}, t_{latency}, t_{exposure} \dots\}$

$$\equiv \min(D_{\rm GW}, D_{\rm GRB}, \dots)$$

Visibility distance: gravitational waves

 $D_{GW}^2 \propto \Theta^2(\theta, \phi, \iota, \psi; \beta_i, \lambda_i, \chi_i)$

 Θ^2 : response pattern of detector network

 $\theta, \phi, \iota, \psi$: inclination angles

 $\beta_i, \lambda_i, \chi_i$: latitude, longtitude, orientation of *i*-th detector

Explicit form are given in Schutz, 2011, CQGra, 28, 125023 Normalization is given in Abbott et al., 2018, LRR, 21, 3

On-axis is also detectable:

F 10³

= 10²

10-3

Visibility distance: GRB TeV gamma-ray afterglow

$$L = \frac{1}{t_{\exp}} \int_{t_{\text{lat}}}^{t_{\text{lat}}+t_{\exp}} L_{\text{jet}} dt \qquad F_{\text{sen}} = F_{\text{CTA}}(t_{\exp})$$

9

Population model: MM detection rate

Marginalizing out all parameters, we obtain the **MM detection rate**:

$$N = \int \Pr(D_L) \frac{R_{BNS}(z)}{1+z} 4\pi$$
(Exact)
where
$$\langle D_v^3 \rangle_X = \int \min(D_{GWS}) dx$$

But we don't actually do the integral. Take the **Monte-Carlo** shortcut:

$$X \sim \mathscr{P}_X \implies \mathsf{Pr}(D_I)$$

 $\langle D_v^3 \rangle$

 $\pi D_L^2 dD_L \approx \frac{4\pi}{3} \langle D_v^3 \rangle_X R_{\rm BNS}(0)$

(Cosmic evolution ignored)

 $(D_{\rm EM},\ldots)^3 \mathscr{P}_X dX$

$$\sum_{k=1}^{k} \approx \frac{1}{k} \sum_{i=1}^{k} H(D_{\text{GW},i}^{2} - D_{L}^{2}) H(D_{\text{GRB},i}^{2} - D_{L}^{2})$$

$$\sum_{i=1}^{k} \approx \frac{1}{k} \sum_{i=1}^{k} \min(D_{\text{GW},i}, D_{\text{GRB},i}, \dots)^{3}$$

Population model: MM Malmquist bias

Marginalizing out all parameters but leaving one of interest (x), we obtain the **Malmquist bias** for x:

$$\mathcal{M}_{x} \equiv \frac{\left\langle D_{v}^{3} \right\rangle_{X/x}}{\left\langle D_{v}^{3} \right\rangle_{X}} = \frac{\left. \mathcal{P}_{x} \right|_{\text{obs}}}{\left. \left. \mathcal{P}_{v} \right|_{v} \right\rangle_{X}}$$

Similarly, it can be evaluated via Monte-Carlo.

When $x = \iota$ (BNS inclination angle)

$$\mathscr{P}_{l}\Big|_{\text{obs}} \propto \left\langle \Theta^{3} \right\rangle_{\left\{\theta,\phi,\psi\right\}} \approx \left\langle \Theta^{2} \right\rangle_{\left\{\theta,\phi,\psi\right\}}^{3}$$

(Seto, 2014, MNRAS, 446, 2887)

and D_{GW} << D_{GRB},
$$\mathcal{M}_l|_{l=0} = 3.4$$

 $\sum_{\{\theta,\phi,\psi\}}^{3/2} = 0.076 (\cos^4 \iota + 6 \cos^2 \iota + 1)^{3/2} \sin \iota$

(Schutz, 2011, CQGra, 28, 125023)

Application to BNS detectability with LIGO+CTA

CONFIGURATION

Population simulation: ~ 10^5 randor sampling from prior distributions base on assumptions or short GRB observations

GW: response pattern of single detector normalized to LIGO 05 sensitivity

GRB: synchrotron self-Compton afterglow by a Gaussian-structured jet + CTA south sensitivity (100s & 30m exposure, 5m latency from GW onset, 20deg zenith)

Table 4.1 :	Summary	of	population	model	parameters
---------------	---------	----	------------	-------	------------

γ	٦	
(b	

Physical quantity	Parameter X	Distribution \mathcal{P}_X
Isotropic energy (jet)	$\log(E_0 _{ m jet}[m erg])$	$\mathcal{G}(\mu=51.2,\sigma=0.83)$
Initial Lorentz factor (jet)	$\Gamma_0 _{ m jet}$	1000
Half-opening angle (jet)	$ heta_{j} [ext{deg}]$	$\mathcal{G}(\mu = 5.8, \sigma = 1.2)$
Isotropic energy (ejecta)	$\log(E_0 _{ m ej}[m erg])$	51
Bulk velocity (ejecta)	$eta_0 _{ m ej}$	0.3
Stratification (ejecta)	k	∞
CBM density	$\log(n_0 [\mathrm{cm}^{-3}])$	$G(\mu = -1.57, \sigma = 1.63)$
CBM profile index	8	0
Magnetic field energy	ϵ_B	0.01
Non-thermal electron energy	ϵ_e	0.1
Electron spectrum index	p	$\mathcal{G}(\mu=2.39,\sigma=0.23)$
Electron injection efficiency	f	1
Zenith	$\cos heta$	$\mathcal{U}(-1,1)$
Azimuth	ϕ	$\mathcal{U}(0,2\pi)$
BNS inclination	$\cos\iota$	$\mathcal{U}(-1,1)$
BNS polarization	ψ	$\mathcal{U}(0,2\pi)$

 \mathcal{G} stands for Gaussian distribution and \mathcal{U} stands for uniform random distribution.

Sampling distribution based on short GRB observation

BNS detectability with LIGO+CTA

	LIGO	C	ΓA	LIGO-CTA		
Config	05	exp100s	exp30m	exp100s	exp30m	
max(D _v) [Mpc]	747	4905	5867	701	710	
<d<sub>v³>^{1/3} [Mpc]</d<sub>	330	246	300	76	84	
<dv3>/<dgw3></dgw3></dv3>	100%	41.4%	75%	1.2%	1.6%	
Rate [yr^-1]*	48.2	3.0	5.43	0.09	0.12**	

*BNS merger rate = 320 [Gpc^-3 yr^-1] is assumed (Abbott+21, ApJ, 913, L7) CTA duty cycle = 15%. Latency from GW = 5 min.

Max distance CTA >> LIGO

Detection rate CTA < LIGO

**0.03 [yr^-1] rescaled from Patricelli+18, JCAP, 05, 056.

GW+VHE joint detectability with LIGO+CTA

Optimized observation with LIGO+CTA

$Pr(GW \cap GRB)$ $Pr(GW) \times Pr(GRB)$

*t*_{delay}: delay time between LIGO and CTA. The smaller the better.

*t*_{exp}: CTA exposure duration. Optimized between 1 and 30 min.

LIN HAOXIANG

progenitor model RE

er W,

Comparison with observational upper limits on FRBs

FRB	z^{a}	$DM \ [pc \ cm^{-3}]$	$F_{ m sen} \left[\mu { m Jy} ight]^{ m b}$	$ u_{ m sen} \left[{ m GHz} ight]^{ m b}$	$P_{ m jet} \; (P_{ m ej})^{ m c}$	Reference
121102^*	0.19	558.0	180.0	1.6	1%~(0.6%)	Chatterjee
180301^*	0.33	536.0	70.0	1.5	1%~(0.5%)	Bhandari et
180814^*	<0.11	189.0	390.0	3.0	2% (1%)	CHIME/FR tion et al. (
180916B	* 0.0337	349.0	18.0	1.6	15% (26%)	Marcote et
181030A	* 0.00385	103.5	480.0	3.0	18% (40%)	Bhandari et
190520^*	0.241	1202.0	202.0	3.0	0.9%~(0.4%)	Niu et al. (2
190711^*	0.522	587.4	750.0	0.9	0.1%~(0%)	Macquart e
200120E	* 0.0008	87.0	50.0	1.4	48% (72%)	Kirsten et a
201124A	* 0.098	420.0	120.0	1.4	4% (4%)	Ravi et al.
131104	< 0.55	779.0	45.0	5.5	0.6%~(0.2%)	Shannon &
171020	< 0.08	114.0	120.0	2.1	4% (3%)	Mahony et
180309	< 0.32	263.0	17.1	3.0	3% (6%)	Aggarwal et
180924	0.3214	361.4	20.0	6.5	3%~(2%)	Bannister e
181112	0.4755	589.3	21.0	6.5	2%~(0.8%)	Prochaska e
190102	0.2913	364.5	19.0	6.5	3%~(2%)	Bhandari et
190523	0.66	760.8	360.0	3.0	0.1%~(0%)	Ravi et al.
190608	0.11778	339.5	10.5	6.5	8% (11%)	Bhandari et
190611	0.378	321.4	750.0	0.9	0.2%~(0%)	Heintz et al
190614D	<1.0	959.2	10.8	1.4	0.8%~(0.4%)	Law et al. (
190714	0.2365	504.1	210.0	3.0	0.9%~(0.4%)	Heintz et al
191001	0.234	506.0	45.0	5.5	2%~(2%)	Bhandari et
191108	< 0.52	588.1	213.0	1.4	0.3%~(0%)	Connor et a
191228	0.243	297.5	22.0	6.5	3% (3%)	Bhandari et
200430	0.16	380.1	210.0	3.0	2%~(0.9%)	Heintz et al
200906	0.3688	577.8	12.0	6.0	3% (2%)	Bhandari et

* Repeating FRB sources

Conclusion: we still need ~100 or 10x current sample to derive meaningful constraint (Lin, Totani, 20, MN, 498, 2384)

ANG

104

17

Conclusion

- A formulation for multi-messenger detectability and Malmquist bias is presented
- Following results have been obtained by now on BNS detectability:
 - Maximum reach CTA >> LIGO, but detection rate CTA << LIGO
 - LIGO-CTA joint detection rate ~ 0.1 per year
 - Taking into account Malmquist bias boosts joint detection rate by $\sim x3$
- To-do list in the future:
 - Detectability with LVK-CTA; with EAS arrays such as LHAASO, SWGO (lower sensitivity but greater FoV and ~100% duty cycle)
 - Add cosmic ray, neutrino into discussion $D_{\nu}(X) = \min(D_{\text{GW}}, D_{\text{EM}}, D_{\text{CR}}, D_{\nu}, \dots)$

