Galactic transients at very high energies

Alicia López Oramas (Instituto de Astrofísica de Canarias)

Synergies at new frontiers at gamma rays, neutrinos and gravitational waves Tokyo, Japan, March 24-25, 2022

Galactic transients

- A wide range of sources in our Galaxy exhibit transient emission via accretion/ejection processes and interactions between e.g. jets, outflows and/or strong winds
- These events can accelerate particles up to relativistic energies, leading to the production of high-energy (HE, E>100 MeV) radiation
- Some objects such as microquasars, magnetars (giant flares), novae or flares from pulsar wind nebulae (PWNe) have already been detected in the MeV- (few) GeV regime (see e.g. Fermi collaboration 2010, Fermi collaboration 2012) -> TeV emitters?
- What are the possible gamma-GW-neutrino synergies?

Imaging Air Cherenkov Telescopes (IACTs)

- Current generation of IACTs composed of three large experiments:
 - H.E.S.S (Namibia), MAGIC (La Palma, Spain), VERITAS (USA)
- Future observatory: Cherenkov Telescope Array (CTA)
 - First Large Size Telescope (LST1) under commissioning (La Palma)

Credit: Gabriel Pérez Diaz (IAC)

CTA: unprecedent transient detection

• Unprecedent sensitivity at short timescales

cherenkov telesco

MICROQUASARS

Jets (radio, mm, Oll X-rays, soft gamme

Accretion disk (optical, UV, soft X-rays)

sta IR)

Cygnus X-1: transient+steady emission

- Massive O star + BH
- Highly collimated jet (Stirling et al. 2001)
- Surrounded by radio/optical **nebula** (Gallo et al. 2005, Russell et al. 2007)
- Three transient episodes with AGILE (Bulgarelli et al. 2008, Sabatini et al. 2010, 2013)

- Detected at HE during HS: 7.5yr Fermi-LAT (Zanin et al. 2016)
 - Likely jet origin
 - Evidence of flux orbital variability: anisotropic inverse-Compton on stellar photons as the mechanism at work
 - Different hadronic component might exist at higher energies

Transient emission: Cygnus X-1

- Hint of transient emission with MAGIC:
 - 4.9 σ (4.1 σ post-trial) in 80 min (Albert et al. 2006)
 - Simultaneously with hard X-ray flare
 - During HS and SUPC
 - First evidence of transient emission from an accreting binary (microquasar)

Steady emission: Cygnus X-1

- 100 h (2007-2014) of MAGIC
 observations mainly at HS (83h)
- No significant excess at either X-ray state for steady, orbital or daily basis emission (Ahnen et al. 2017)
- No emission due to interaction between jet and ISM
 - Jet-medium interaction discarded (not affected by γ-γ absorption)
- Transient emission (Albert et al. 2007) still possible at binary scale

• Will CTA detect transient and/or steady emission from CygX1?

Cygnus X-1

- CTA simulations (100 GeV 1 TeV) to search for:
 - Transient emission: 30-minute observation with MAGIC hint SED as input
 - Persistent emission: lepto-hadronic model by Kantzas et al. 2021, assuming 50 h of observations
- Detection of transient (44 σ , TS=1907) and persistent emission (39 σ , TS= 1537) with CTA-North

Other microquasars

ULs to the flux of different microguasars: SCO X-1 (Aleksić et al. 2011) MWC 656 (Aleksić et al. 2015), V404 Cyg (Ahnen et al. 2017), Cyg X3 (MAGIC 2017), SS433 (Ahnen et al. 2018), GRS 1915+105, Circinus X-1, and V4641 Sgr (Abdalla et al. 2018), MAXI J1820+070 (Hoang et al. 2019, Molina et al. 2021)

 10^{-4}

 $\mathrm{E}^{2}\mathrm{F}(\mathrm{E})$ [erg cm^{-2} \mathrm{~s^{-1}}]

- Including low-mass and high-mass systems and BH and NS as compact objects
- LMXB: low mass star + BH
- Major outburst in June 2015 after 26 years in auiescence
 - Hint of transient detection (~4 σ) in Fermi-LAT data

(Loh et al. 2016) coincident with the brightest peak

of luminosity in radio, hard X-ray and soft γ -ray (Loh et al. 2016; Siegert et al. 2016, Piano et al. 2017)

- No VHE emission detected by MAGIC (Ahnen et al.2017)
- CTA simulations (100 GeV-1 TeV): extension of the PWL spectrum observed by Fermi-LAT (Loh et al. 2016)
- No detection expected with CTA

Fermi-LAT (Loh+ 2016)

model for CTA

Connected gamma-neutrino emission?

- Protons can be accelerated in microquasar jets -> likely production of neutrinos
- Models on CygX1 and LMC X1 suggest possible neutrino detection associated to the former source (Papavasileiou et al. 2021)
- Hadronic dark jets of SS433 could produce neutrino emission (Reynoso et al. 2008)
 - Predicted neutrino flux at 1 TeV of $\phi_v = 2 \times 10^{-12}$ cm⁻² s⁻¹ (averaged over all precessional phases)
 - **UL at 1 TeV** (8 years): 2.71 ·10⁻¹³ TeV cm⁻² s⁻¹ (Aartsen et al. 2019), however it is spatially extended (angular size of up to several degrees >PSF_Icecube) -> analysis sensitivity is reduced

Icecube has set ULs to the steady neutrino flux of many high-mass microquasars such as SS433, CygX1, CygX3 (Aartsen et al. 2019) after 8 years of data-> is transient emission still possible?

PWNe flares

PWNe flares

- Crab Nebula is the standard candle at VHE
 - IC emission detected up to 100 TeV by HAWC (Abeysekara et al. 2019) and MAGIC via VLA observations (Acciari et al. 2020)
 - **Pulsar emission** detected by MAGIC from ~25 GeV **to few TeV** (Aliu et al. 2008, Ansoldi et al. 2016)

Crab Nebula flares

- Rapid and bright MeV flares observed in Crab (Tavani et al. 2011, Abdo et al. 2011) with timescales of hours
 - No TeV detection with current IACTs
- Studying the capabilities of CTA to detect the Crab flares (Mestre et al. 2021, CTA consortium in prep)
- Good prospects for CTA and specially LSTs

Gamma-ray Space Telescope

MAGNETARS

Magnetar-FRB connection

López-Oramas et al. 2021 (MAGIC collaboration)

HE emission from an extragalactic magnetar

- Magnetars were never detected at E>100 MeV... until April 15, 2020
- Detection of flaring emission from an extragalactic magnetar
 - During a Giant Flare
 - Short very energetic (~10⁴⁴-10⁴⁷ erg s⁻¹) hard spikes followed by pulsating tail
 - Very rare events: only three events in the last 40 years in the Galaxy
- Detected by Fermi-GBM (Roberts et al. , Nature Astronomy, 2021)
- HE emission discoverd with Fermi-LAT (Fermi-LAT coll., Nature Astronomy, 2021)
 - Three associated events with energies 480 MeV (arrival time 19 s), 1.3 GeV (180 s) and 1.7 GeV (284 s)

$(^{\circ})$
1.0
6.7
2.3
2.9
0.9
1.5
1.3
1.0
0.4
2.6
2.8

Fermi-LAT coll. , Nature Astronomy, 2021

RD)

Novae

- Novae are **thermonuclear explosions** caused by accumulation of material from **donor star** on a surface of a **white dwarf (WD)**
 - If the donor star is a red giant (RD) this can produce a symbiotic binary with the WD immersed in the RG wind
- Novae outbursts usually last from weeks to months
- Some novae show repeated outbursts within few years/ human lifetime: **recurrent novae (RN)**
 - For a symbiotic nova to be RN, the WD must be massive (≥1.1 M_☉)
- The first nova to be detected by Fermi-LAT was the symbiotic system V407 Cyg(Fermi-LAT, Science, 2010)
- Several classical novae (WD+low-mass star) have also been detected by Fermi-LAT (Fermi-LAT, Science, 2014)
- Most of the Fermi-detected novae show a cut-off in their SED
 - All spectra of gamma-ray novae have been measured only up to 6 – 10 GeV

Fermi-LAT, Science, 2014

Gamma and neutrino predictions

• TeV neutrinos are expected to be produced during novae explosions and be connected with the VHE gammaray emission

 Prediction VHE and neutrino emissions from symbiotic nova explosions (V407Cygni-like) (Sitarek & Bednarek 2012)

Bednarek & Smialkowski 2022

 Production of neutrinos in collisions of relativistic protons with the matter of the fast wind from the WD (Bednarek & Smialkowski 2022)
 21

SUPERNOVAE

Supernovae at VHE

- IACTs campaigns on **extragalactic SNe**
 - MAGIC ULs on type Ia SN 2014J (Ahnen et al. 2017), located at M82 (3.6 Mpc) -> nearest Type Ia SN in the last 50 years
 - H.E.S.S. ULs on 10 core-collapse SNe (CCSNe) observed within a year of the supernova event (Abdalla et al. 2019)
 - The lack of detection does not necessarily indicate that the early phase of SN evolution is not generally conducive to CR acceleration
 - The non-detection suggests that the circumstellar mediums in this subsample are not likely to be dense enough for particle acceleration

SNe	E _{Th}	Flux UL	Flux UL	UL on L	UL on L	ULs on $\dot{M}/u_{\rm w}$	
		$(> E_{\rm Th})$	(> 11eV)	$(> E_{\rm Th})$	(>11eV)	Average time	Fit
	(TeV)	$(10^{-13} \text{ cm}^{-2} \text{s}^{-1})$		$(10^{40} \text{ erg s}^{-1})$		$(10^{-5} \text{ M}_{\odot} \text{ yr}^{-1} \text{ km}^{-1} \text{ s})$	
SN 2004cx	0.18	10	1.9	13.0	2.5	6.7	3.2
SN 2005dn	0.21	2.2	0.41	6.2	1.2	3.8	0.26
SN 2008bk	0.21	6.0	4.8	0.18	0.15	1.4	0.4
SN 2008bp	0.21	29	5.5	46.7	8.9	15.9	12.3
SN 2008ho	0.33	16	7.7	52.8	25.4	9.4	5.3
SN 2009hf	0.21	20	5.3	111	29.5	19.9	15.9
SN 2009js	0.63	15	11	7.3	5.4	3.1	0.9
SN 2011ja	0.21	20	5.2	1.1	0.28	1.77	1.6
SN 2012cc	0.72	15	10	11.5	7.7	11.6	3.7
SN 2016adj	0.196	8.8	1.7	0.24	0.05	0.25	0.20

Abdalla et al. 2019

CCSNe as TeV candidates

- CCSNe can fulfil the right conditions for CR acceleration (Katz et al. 2011; Murase et al. 2011; Bell et al. 2013, Cristofari et al. 2022)
 - Detection at radio frequencies confirm the presence of relativistic electrons and shows that they could be efficient energetic particle accelerators
 - Some author **predicts a gamma-ray flux of hadronic origin** from SNe and young SNRs (Kirk et al. 1995, Dwarkadas 2013)
 - VHE emission is expected in Type II CC-SNe but the **gamma-ray signal can be attenuated in the first 10-20 days** (Cristofari et al. 2022)
 - The gamma-ray signal is expected to be significantly lower than the typical sensitivity of IACTs for objects located at 1 Mpc
 - Galactic CCSNe and those located in the Magellanic Clouds are expected to be detectable by CTA
- In the case of Galactic CCSNe observations can be triggered by an observation of a prompt neutrino flare, since the EM signal is expected to be delayed with respect to neutrinos by minutes to hours

Summary

- Current generation of IACTs are searching for the TeV counterpart of several Galactic sources
 - Detection of the first (symbiotic recurrent) nova at VHE
- CTA will perform detections of Galactic transients with unprecedent sensitivity
- Microquasars:
 - Current generation of IACTs have set constraining limits
 - CTA will detect for the first time several microquasars
 - Putative detection of CygX1 (steady+transient)

• If protons are accelerated, microquasars could contribute to Galactic CR budget and neutrinos can be produced

- Flares from the Crab Nebula:
 - GeV detection by Fermi-LAT, not yet detected by IACTs
 - Detection both with CTA-N and with LSTs subarray in <5 h
- Magnetars
 - First FRB connected to a magnetar
 - GeV detection of an extragalactic magnetar (giant flare)
- Novae
 - RS Oph as first nova to be detected at VHE
 - Observations proved a hadronic origin of the gamma-ray emission
 - No neutrino counterpart reported
- Supernovae
 - CCSNe as perfect candidates as TeV emitters
 - Gamma-ray flux likely to be attenuated in the first 10-20 days
 - Galactic and Magellanic sources have better chances to be detected
- **Open questions:** Can neutrinos be detected from any of these sources during transient episodes? Can they be used as trigger for putative VHE emission? Can we detect magnetar/FRB emission? Are classical novae gamma-ray emitters?

Galactic transients at very high energies

Alicia López Oramas (Instituto de Astrofísica de Canarias)

Synergies at new frontiers at gamma rays, neutrinos and gravitational waves Tokyo, Japan, March 24-25, 2022