Gravitatonal wave sources and multi-messenger gravitatonal wave astrophysics Hideyuki TAGOSHI Institute for Cosmic Ray Research The University of Tokyo

Synergies at New Frontiers at Gamma Rays, Neutrinos and Gravitational Waves ICRR, March 24-25, 2022

Contents

- Sources of gravitational waves (GW)
- Core collapse supernovae GW
- BNS and sky localization
- Low latency alert

Emission of gravitational waves

- Emission of strong gravitational waves requires
 - Non spherically symmetric motion of mass
 - Motion should be very high speed ⇔ strong self-gravity
 - Compact objects are main sources (BH, NS, WD, ...)
- Gravitational wave sources
 - Compact binary coalescence (CBC) (BH-BH, NS-BH, NS-NS)
 - Steller core collapse (burst waves)
 - Pulsar (continuous waves)

•

Core Collapse Supernova GW

(Rapidly rotating progenitor model) Magnetorotationally-driven (MHD-driven) mechanism

Abdikamalov et al. PRD90, 044001 (2014)

Kuroda et al. ApJ 829, L14 (2016)

Detectability of Core Collapse Supernova GW

M.J. Szczepań czyk et al. arXiv:2104.06462

TABLE I. Waveforms from multidimensional CCSN simulations described in the text. For each waveform family we provide a reference, dimensionality, a summary of the numerical method (EOS and code name) and observed GW features. Then, we provide details for example waveforms: identifier, progenitor stellar mass $M_{\rm star}$, initial central angular velocity Ω_c , the frequency $f_{\rm peak}$ at which the GW energy spectrum peaks, the emitted GW energy E_{GW} and approximate signal duration. The superscript symbols: [†]non-ZAMS, ^{*}the simulation was stopped before the full GW signal was developed.

Waveform	Numerical Mathod	GW	Waveform	M _{star}	Ω_c	fpeak	E_{GW} [M a^{2}]	Duration
Fainity	Method	reatures	A 1001.0	10	[140/5]	[112]	0.410-9	[III5] 5.08
A1 11 1 / 1	1.0000 01	,	A1001.0	12	1.0	819	9.4×10^{-8}	50~
ADDIKAMAIOV et al.	CoCoNuT	bounce	A2001.0	12	1.0	804	1.7×10^{-9}	50
2014, 2D [10]	COCONUT	prompt-conv.	A3O01.0	12	1.0	807	1.0×10^{-9}	50
			A4O01.0	12	1.0	8/3	4.2×10^{-10}	00
A	LS220	g-modes	s11	11.2	-	642	1.1×10^{-10}	350
Andresen et al.	CoCoNuT	SASI (spiral)	s20	20	-	087	1.4×10^{-9}	430
2017, 5D [51]	PROMETHEUS	convection	s20s	20	-	693	1.4×10^{-10}	530
			s27	27	-	753	4.4×10^{-10}	570
Andresen et al.	LS220	SASI (spiral)	mibir	15	0.5	689	2.7×10^{-10}	400
2019, 3D [77]	PROMETHEUS	g-modes	m15nr	15	-	820	1.5×10^{-10}	350
	1.0220	DUC	m15r	15	0.2	801	7.1 × 10 11	380*
Cerda-Duran et al.	LS220	BH formation	fiducial	35	2.0	922	3.3×10^{-7}	1620
2013, 2D [59]	CoCoNuT	g-modes, SASI/conv.	slow	35	1.0	987	9.4 × 10	1050
Dimmelmeier et al.	LS, Shen	bounce	s15A2O09-ls	15	4.6	743	2.7×10^{-9}	60*
2008, 2D [78]	CoCoNuT	prompt-conv.	s15A3O15-ls	15	13.3	117	5.2×10^{-5}	340*
			s20A3O09-ls	20	9.0	615	2.2×10^{-6}	80*
Kuroda et al.	SFHx, DD2, TM1	g-modes	SFHx	15	-	718	2.1×10^{-9}	350^{+}
2016, 3D [79]	3D-GR	SASI	TM1	15	-	714	1.7×10^{-5}	350*
Kuroda et al.	SFHx, DD2, TM1	g-modes	s11.2	11.2	-	195	1.3×10^{-10}	190^{*}
2017, 3D [80]	3D-GR	SASI/convection	s15.0	15	-	430	3.1×10^{-9}	210^{*}
Mezzacappa et al. 2020 3D [73]	LS220 CHIMERA	g-, p-modes SASI/convection	c15-3D	15	-	1064	6.4×10^{-9}	420^{*}
2020, 0D [10]	OHIMILICI	57151/convection	M10 LS220	10	_	1594	2.4×10^{-9}	1210
Morozova et al	LS220 DD2 SEHo	f- g- p-modes	M10 DD2	10	_	1544	1.7×10^{-9}	1700
2018 2D [81]	FORNAX	SASI/convection	M13 SFHo	13	-	076	1.7×10^{-8}	1360
2010, 20 [01]	ronnin	51151/convection	M10 SFHo	10		1851	6.3×10^{-8}	1540
			115_0F110	15	-	144	0.3×10^{-11}	1400
Müller et al.	JM	SASI/convoction	N20.2	20	-	144	2.2×10 1 1 × 10 ⁻¹¹	1500
2012, 3D [71]	PROMETHEUS	SASI/ convection	W15 4	15	-	208	1.1×10 2.5×10^{-11}	1200
			W10=4	20	-	1191	$\frac{2.3 \times 10}{6.2 \times 10^{-10}}$	500*
O'Connorfe Couch	SEL	a modos	mesa20	20	-	1121	0.3×10^{-9}	650*
2018 3D [82]	FLASH	SASI/convoction	mesa20_LR	20	-	1022	2.2×10^{-10}	500*
2010, 3D [02]	I LASII	SASI/convection	mesa20_pert	20	-	1033	9.5×10 1.0 × 10 ⁻¹⁰	000 480*
			-97 fb+1 00	20	-	001	1.0×10 1.0×10^{-10}	400
Ott at al	1 6000	prompt conv	s27-meat1.00	27	-	205	4.0×10 2.4 × 10 ⁻¹⁰	190
2012 2D [22]	Zolmoni	g modes	s27-meat1.05	27	-	365	3.4×10^{-10}	190
2013, 3D [63]	Zeimam	g-modes	s27-meat1.10	27	-	820 820	3.3×10^{-10}	190
D UCM"II	T (1990)		827-meat1.15	21	-	039	3.1×10^{-9}	190
Powell&Muller	LS220	g-modes	s3.5_pns	3.5	-	878	3.6×10^{-8}	700
2019, 3D [84]	CoCoNu1-FM1	-	\$18	18	-	872	1.6 × 10 °	890
Powell&Müller	LS220	f-, g-modes	s18np	18	3.4	742	7.7×10^{-10}	1000
2020, 3D [85]	CoCoNuT-FMT	SASI	m39	39	-	074	1.5×10^{-8}	006
		prompt-conv.	y20	20	-	872	1.0×10^{-5}	980
Radice et al.	SFHo	f-, g-modes	s9	9	-	727	1.6×10^{-10}	1100
2019, 3D [50]	FORNAX	SASI/convection	s13	13	-	1422	5.9×10^{-5}	800*
		prompt-conv.	s25	25	-	1132	2.8×10^{-8}	600*
			A467_w0.50_SFHx	12	0.5	891	1.6×10^{-8}	60*
Richers et al.	18 EOSs	bounce	A467_w0.50_LS220	12	0.5	820	5.1×10^{-9}	60*
2017, 2D [86]	CoCoNuT	prompt-conv.	A467_w9.50_SFHx	12	9.5	448	4.2×10^{-8}	60*
			A467_w9.50_LS220	12	9.5	863	4.1×10^{-8}	60^{*}
Scheidegger et al	LS180	bounce	R1E1CA_L	15	0.3	1103	1.2×10^{-10}	90^{*}
2010. 3D [54]	Pen	prompt-conv.	R3E1AC_L	15	6.3	588	2.2×10^{-7}	110^{*}
2010, 02 [04]	1 011	convection	R4E1FC_L	15	9.4	683	3.9×10^{-7}	100*
		g-modes	B12	12	-	708	3.4×10^{-9}	1300
Yakunin et al.	LS220	SASI/convection	B15	15	-	865	7.9×10^{-9}	1100
2015, 2D [72]	CHIMERA	prompt-conv	B20	20	-	602	4.2×10^{-9}	900
		prompt-conv.	B25	25	-	1022	1.4×10^{-8}	1140

Detection range of Core Collapse Supernova GW

TABLE II. The results presenting the sensitivity of cWB to the detection of GWs from a variety of CCSN models. The predicted detection ranges for O4 and 05 are calculated at 10%, 50% and 50% detection efficiency. The detectable SNR is also calculated at 10%, 50% and 90% detection efficiency. The waveform overlap (accuracy of cWB reconstruction) is an averaged at injected SNR of 20, 40 and 60.

Waveform	Waveform	O4 de	O4 det. range [kpc] O5 det. range [kpc]			ge [kpc]	Detect. SNR			Wav. Overlap			
Family	Identifier	90%	50%	10%	90%	50%	10%	10%	50%	90%	20	40	60
	A1O01.0	NaN	15.9	58.7	NaN	29.4	109.7	9.7	12.7	NaN	0.83	0.90	0.93
Abdikamalov	A2O01.0	NaN	19.3	71.0	NaN	35.2	130.0	10.0	13.1	NaN	0.88	0.93	0.94
et al. 2014 [76]	A3O01.0	NaN	20.1	84.6	NaN	37.1	157.4	8.9	12.5	NaN	0.86	0.92	0.95
	A4O01.0	NaN	8.4	39.3	NaN	15.2	72.3	10.2	14	NaN	0.88	0.91	0.94
	s11	0.6	14	2.3	11	2.6	4.3	13.1	16.5	25.1	0.59	0.82	0.88
Andresen	s20	14	3.4	5.6	2.5	6.2	10.4	14.2	17.9	24.9	0.50	0.79	0.88
et al 2017 [51]	s20s	1.6	4 1	6.8	2.9	7.5	12.6	19.7	24.0	35.7	0.35	0.71	0.84
	s27	0.8	1.9	3.1	1.4	3.5	5.7	17.6	22.2	33.5	0.71	0.68	0.83
	m15fr	1.4	3.2	5.6	2.5	5.8	10.1	11.4	16.1	22.0	0.61	0.77	0.85
Andresen	m15nr	0.8	1.8	3.1	1.4	3.3	5.5	13.0	16.3	22.6	0.59	0.82	0.88
et al. 2019 [77]	m15r	0.3	0.9	1.5	0.6	1.6	2.8	16.0	20.0	27.6	0.46	0.78	0.86
Cerdá-Durán	fiducial	NaN	15.7	51.5	NaN	28.2	93.9	31.0	37.8	NaN	0.52	0.81	0.87
ot al 2013 [50]	elow	NoN	35.0	154.3	NaN	66 6	285.7	15.3	10.7	NoN	0.32	0.63	0.81
et al. 2010 [00]	e15A2000-le	NaN	14.5	60.1	NaN	26.1	117.5	10.0	13.7	NoN	0.55	0.03	0.01
Dimmelmeier	s15A2O05-ls	NoN	13.6	50.1	NoN	24.5	117.0	0.2	12.2	NoN	0.00	0.91	0.95
et al. 2008 [78]	s10A3O10-ls	NoN	10.0 12.5	50.0	NoN	24.0	125.0	10.3	14.2	NoN	0.30	0.94	0.95
Kunada	S20A3003-18	4.0	12.0	09.9	0 7	22.0	120.9	10.3	14.2	292.1	0.64	0.90	0.92
st al 2016 [70]	JF IIX	4.9	11.0	20.0	0.1 6 E	21.0	45.5	10.4	14.1	10 5	0.05	0.82	0.00
et al. 2010 [79]	- 1 MI	3.7	8.0	15.2	0.0	14.0	24.0	12.7	10.0	19.0	0.01	0.82	0.00
st al 2017 [20]	s11.2 a15.0	2.0	67	10.9	4.0	14.5	29.0	11.0	14.7	21.5	0.62	0.90	0.95
et al. 2017 [80]	\$15.0	2.1	0.7	11.7	5.0	12.2	20.5	11.2	14.3	19.5	0.75	0.89	0.92
Mezzacappa et al. 2020 [73]	c15-3D	1.8	4.4	7.4	3.0	8.2	14.0	17.0	21.1	33.8	0.42	0.69	0.82
	M10_LS220	NaN	1.3	5.2	NaN	2.4	9.5	16.2	21.7	NaN	0.47	0.72	0.81
Morozova	M10_DD2	NaN	1.9	7.4	NaN	3.4	13.7	15.2	19.6	NaN	0.57	0.80	0.85
et al. 2018 [81]	M13_SFHo	NaN	2.3	10.2	NaN	4.5	19.2	15.8	20.9	NaN	0.49	0.74	0.80
	M19_SFHo	NaN	3.9	16.7	NaN	6.9	30.0	18.9	24.4	NaN	0.37	0.68	0.78
Müllen	L15-3	1.7	4.3	8.0	3.3	8.1	14.1	10.1	12.6	17.6	0.73	0.81	0.84
ot al 2012 [126]	N20-2	0.5	1.9	3.6	1.1	3.5	6.5	11.3	14.4	22.1	0.68	0.79	0.84
et al. 2012 [120]	W15-4	0.5	1.9	5.2	0.9	3.7	9.7	10.6	14.2	42.2	0.71	0.83	0.88
	mesa20	0.4	1.1	1.9	0.8	2.0	3.5	16.3	20.7	30.8	0.50	0.70	0.82
O'Connor&Couch	mesa20_LR	0.6	1.4	2.6	1.0	2.5	4.7	18.5	25.0	42.3	0.45	0.67	0.79
2018 [82]	mesa20_pert	0.7	1.6	2.9	1.2	2.9	4.9	16.2	21.0	28.5	0.47	0.75	0.84
	mesa20_v_LR	0.4	1.1	1.9	0.8	2.1	3.5	16.0	20.2	29.6	0.51	0.78	0.87
	s27-fheat1.00	2.4	5.8	10.5	4.3	10.8	20.2	11.1	14.3	20.1	0.75	0.89	0.92
Ott	s27-fheat1.05	2.0	5.8	10.6	4.1	10.5	18.4	10.9	14.1	19.3	0.74	0.88	0.91
et al. 2013 [83]	s27-fheat1.10	2.4	5.8	10.0	4.0	10.0	17.4	11.2	14.2	19.6	0.75	0.88	0.92
	s27-fheat1.15	1.9	5.2	9.0	3.7	9.3	16.0	11.0	14.2	19.5	0.76	0.88	0.92
Powell&Müller	s3.5_pns	1.8	3.9	6.4	3.2	7.1	11.7	17.0	20.9	30.4	0.44	0.75	0.83
2019 [84]	s18	3.2	7.7	12.7	5.5	14.0	23.0	15.5	19.2	28.0	0.47	0.73	0.81
D 110 M."11	m39	10.3	30.7	70.2	18.5	56.6	128.8	12.8	18.8	38.2	0.57	0.73	0.81
Powell&Muller	s18np	2.3	5.7	12.3	4.1	10.5	22.7	10.6	14.6	21.5	0.67	0.81	0.88
2020 [85]	v20	3.4	8.5	14.6	6.2	15.5	26.8	16.2	19.9	29.4	0.42	0.72	0.82
	s9	0.0	0.4	0.7	0.2	0.7	1.3	11.1	14.3	23.1	0.73	0.84	0.91
Radice	s13	0.4	1.0	1.8	0.7	1.8	3.1	10.9	14.3	21.1	0.68	0.80	0.87
et al. 2019 [50]	s25	2.4	5.6	9.4	4.3	10.3	17.7	22.5	30.6	42.8	0.43	0.65	0.78
	A467 w0.50 SFHx	NaN	8.0	32.9	NaN	15.1	60.6	8.70	13.7	NaN	0.86	0.91	0.93
Richers et al. 2017 [86]	A467_w0.50 LS220	NaN	10.3	43.0	NaN	18.1	80.3	10.2	14.2	NaN	0.85	0.93	0.94
	A467 w9.50 SFHx	NaN	24.2	105.2	NaN	47.9	194.2	10.3	14.3	NaN	0.82	0.91	0.91
	A467 w9 50 LS220	NaN	22.5	90.5	NaN	40.8	171.9	10.1	14.1	NaN	0.82	0.89	0.92
	BIEICA L	0.4	1.3	3.5	0.8	2.4	6.5	9.9	13.1	22.5	0.76	0.86	0.91
Scheidegger et al. 2010 [54]	R3E1AC L	29.9	89.6	171.8	55.5	163.9	313.0	10.6	13.4	17.2	0.76	0.80	0.91
	B4E1FC L	31.8	98.4	203.4	59.3	180.1	374.6	8.9	11.8	15.7	0.81	0.03	0.93
	B19	NoN	3.6	13.6	03.5 NaN	6.6	25.2	15.9	10.2	NoN	0.51	0.91	0.88
Valunin	B15	NaN	4.3	17.0	NaN	77	20.2	17.4	19.9 99.1	NoN	0.31	0.78	0.87
at al 2015 [72]	B20	NaN	3.0	15.9	NaN	5.7	28.2	15.8	22.1	NoN	0.44	0.10	0.80
Co al. 2010 [[2]	B25	NaN	6.6	26.1	NaN	12.5	48.2	15.7	20.0	NaN	0.40	0.32	0.85
	1040	T # C0 T #	0.0	20.1	TACTA	14.0	'TO.4	±0.7	40.0	TACPTA	0.43	0.10	0.00

M.J. Szczepań czyk et al. arXiv:2104.06462

Detection range of GW at O5 (PSD BNS range LIGO: 330Mpc, Virgo 150Mpc, KAGRA 130Mpc)

Neutrino-driven mechanism: ~ 10kpc

Rapidly rotating progenitor case: ~100kpc

Sky localization accuracy for burst signals

Essick et al. arXiv:1409.2435

Area (in square degrees) that must be searched before the injected test signal can be found.

The Nobel Prize in Physics 2015

Takaaki Kajita Prize share: 1/2

Photo: A Mahmour

Arthur B. McDonald

Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Photos: Copyright © The Nobel Foundation

Supernovae

Neutrino

Coincident observation to explore explosion mechanism.

Detectors in ICRR can contribute a lot for such a case.

The Nobel Prize in Physics 2002

Raymond Davis Jr. Prize share: 1/4

Masatoshi Koshiba Prize share: 1/4

Prize share: 1/2

The Nobel Prize in Physics 2002 was divided, one half jointly to Raymond Davis Jr. and Masatoshi Koshiba "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos" and the other half to Riccardo Giacconi "for pioneering contributions to astrophysics, which have led to the discovery of cosmic X-ray sources".

Photos: Copyright © The Nobel Foundation

Gravitational waves

SuperKamiokande

This is possible if a supernova occurs near the Galaxy (once in ~50 years) 2011年7月24日日曜日

Binary neutron star mergers

About 90 compact binary mergers have been detected!

Historical BNS merger GW170817

3 detectors Normalized amplitude 500 LIGO-Hanford 100 50 500 Frequency (Hz) 200 LIGO-Livingston 50 500 Virgo 100 50 -30 -20 -10 0 Time (seconds)

Sky location consisitent

Optical counterparts

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20

Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from LIGO (190 deg²; light green), the initial LIGO-Virgo localization (31 deg²; dark green), IPN triangulation from the time delay between *Fermi* and *INTEGRAL* (light blue), and *Fermi*-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.

11

Abbott et al.

Source localization accuracy for two BNS signals

- Sky map: error region of source location (possible location of the source in the sky)
- Initial sky map ~ 30 square degree
 - 3 detector observation
- Distance ~ 40 Mpc

Sky map for GW190425 (O3)

- Initial sky map \sim 10,000 square degree
 - 2 detector observation with LIGO-Livingston and Virgo (Hanford was offline)
- Estimated distance ~ 159 Mpc
 - EM signals should have been fainter even if they were emitted

Confident BNS in O3: GW190425

BNS event detected strongly by LIGO Livingston, and weakly by Virgo (LIGO Hanford was off at the time)

Properties for GW190)425
Low-spin Prior $(\chi < 0.05)$	High-spin Prior $(\chi < 0.89)$
$1.60 - 1.87 M_{\odot}$	1.61-2.52 M
$1.46-1.69 M_{\odot}$ $1.44^{+0.02}_{-0.02} M_{\odot}$	$1.44^{+0.02}_{-0.02} M_{\odot}$
$1.4868^{+0.0003}_{-0.0003} M_{\odot}$	$5571.4873^{+0.0008}_{-0.0006} M_{\odot}$
0.8 > 1.0 3 3 ^{+0.1} M	0.4 - 1.0 $3.4^{+0.3}M_{\odot}$
$0.012^{+0.01}_{-0.01}$	$0.058^{+0.11}_{-0.05}$
150^{+69} Mpc	150^{+69} Mpc
≤600	≤1100
	Table 1 Properties for GW190 Low-spin Prior $(\chi < 0.05)$ 1.60-1.87 M_{\odot} 1.46-1.69 M_{\odot} 1.44_{-0.02}^{-0.02} M_{\odot} 1.4868_{-0.0003}^{+0.0003} M_{\odot} 0.8 \geq 1.0 3.3_{-0.1}^{+0.1} M_{\odot} 0.012_{-0.01}^{+0.01} 159_{-72}^{+69} Mpc ≤ 600

- Estimated distance ~ 159 Mpc
- EM signals should have been fainter even if they were emitted
- No clear EM counterpart was identified.

Figure 2. Sky map for GW190425. The shaded patch is the sky map obtained from the Bayesian parameter estimation code LALINFERENCE (Veitch et al. 2015) (see Section 4) with the 90% confidence region bounded by the thin dotted contour. The thick solid contour shows the 90% confidence region from the low-latency sky localization algorithm BAYESTAR (Singer & Price 2016).

Source localization with GW detectors

- It is important to determine the location of the source accurately so that astronomical telescopes can perform follow-up observation to search for optical counterpart.
- One laser interferometer can not determine the location of short duration sources in the sky.
- Signals from different direction are received with the detector in the same way, and can not be distinguished.

Source localization with GW detectors

• We need **3** or more detectors to detemine the source location accurately

Gravitational waves

Arrival time of signal at each detector is different and the difference depends on the location in the sky. With 3 or more detectors, the direction to the source can be determined.

KAGRA O4 and later

- The next LIGO-Virgo-KAGRA observing run (O4) is planned to start in mid-December 2022.
- KAGRA will join O4 from the beginning.
- Upgrade works toward O4 is in progress.
- Expected sensitivity of KAGRA at O4 is still not so great compared to LIGO-Virgo.

Expected binary neutron star detection range (ref. https://gwcenter.icrr.u-tokyo.ac.jp/en/archives/1581) LIGO: 160 - 190 Mpc Virgo: 80 - 115 Mpc KAGRA: 1 - 10 Mpc

• But we will continue our effort to achive better sensitivity, and toward the design sensitiviy

Source localization

Assumed sensitivity (BNS range) LIGO 120Mpc, Virgo 60Mpc, KAGRA 25Mpc

Ref: GW170817: 28-31 deg²

BNS

17

Sky localization accuracy

At design sensitivity

NS-NS	@180Mp)C	(95%Cl			
(1.4,1.4)Msu	IN	LHV	LHV <mark>K</mark>			
median of δ	Ω [Deg²]	30.25	9.5			
1) (aitab at al		AE (2012)				

J.Veitch et al., PRD85, 104045 (2012) (Bayesian inference) See also Rodriguez et al. 1309.3273 L:LIGO-Livingston H:LIGO-Hanford V: Virgo K: KAGRA I: LIGO-India

Ref: GW170817: 28-31 deg² @ 40 Mpc

BH-NS @200Mpc

(10,1.4)Msun	LHV	LHVK	LHV <mark>K</mark> I
median of $\delta\Omega$ [Deg ²]	21.5	8.44	4.86

(Tagoshi, Mishra, Arun, Pai, PRD90, 024053 (2014), Fisher matrix)

Low latency alert

Low latency alert

GW170817 alert latency Alert: ~40 min., Sky map: ~5 hrs

O3: autonomous preliminary GCN Notice started Preliminary GCN Notice latency: 7.0⁺⁹²-4 minutes (automated process could not work for several cases)

Low latency alert

R. Magee et al. ApJ L. 910, L21 (2021)

GW170817 alert latency Alert: ~40 min., Sky map: ~5 hrs

O3: autonomous preliminary GCN Notice started Preliminary GCN Notice latency: 7.0⁺⁹²-4 minutes (automated process could not work for several cases)

R. Magee et al. ApJ L. 910, L21 (2021)

Mock data challenge of early warning alert by using LV O3 data about 8 days

5 trigger satisfy alert sending criteria4 trigger could be sent out before merger

Sky map and parameter estimation

10,200 deg² (90% credible region)

8,284 deg² (90% credible region

GW190425 Initial sky map by BAYESTAR:

Improved sky map using a Bayesian analysis:

BAYESTAR ~ a few seconds,

It takes time to obtain an improved sky map with full Bayesian analysis (>hours)

Figure 2. Sky map for GW190425. The shaded patch is the sky map obtained from the Bayesian parameter estimation code LALINFERENCE (Veitch et al. 2015) (see Section 4) with the 90% confidence region bounded by the thin dotted contour. The thick solid contour shows the 90% confidence region from the low-latency sky localization algorithm BAYESTAR (Singer & Price 2016).

Sky map and parameter estimation

Efforts to reduce the computation time

- Morisaki, Raymond (PRD102, 104020 (2020)) take into account of information from detection pipelines
- Morisaki (PRD104, 044062 (2021)) Divide frequency range of signal
- Eunsub, Morisaki, Tagoshi, 2203.05216, Use another parameters for masses and spins
- Sky map generation with machine learning Chatterjee et al. (PRD100, 103025 (2019)) Sasaoka et al. 2202.12784

Sky map generation with machine learning

Test result demonstration on 3-detector signal with simulated noise

Summary

- Core collapse supernovae GW can be detected within ~10kpc, and within ~100kpc for rapidly rotating progenitors
- Sky localization accuracy of supernova signals may not be very good
- For better sky localization, we need observation with 3 or more detectors.
- Since the ducy cycle of each detector is < 90%, there are time when one or more detectors are down.
- In order to increase the observing time with 3 detectors, we need KAGRA.
- Low latency alerts to GCN have been issued.
- Efforts are ongoing to reduce the latency of alert and to obtain accurate sky map earlier.
- Development and testing of early warning (pre-merger) alert are ongoing.
- It is better to improve the sensitivity at lower frequency of detectors to obtain better S/N and better sky localization accuracy form early warning alert.
- Upgraded LIGO/Virgo/KAGRA or 3rd generation detectors may be needed.

Appendix

R. Magee et al. ApJ L. 910, L21 (2021)

Figure 4. (a) Projected O4 early warning detection rate assuming 0 s (blue) and 25 s (red) end-to-end latencies from the GW alert system. The worst case scenario assumes 5 s for calibration and data transfer, 5 s for pipeline analysis, and 15 s for event upload and GCN creation. The rate of expected detections was estimated from a simulated data set assuming a 100% detector duty cycle for the 4-detector HLVK network. The uncertainty bands reflect the (5%, 95%) confidence region for the BNS rate. Signals with network S/Ns greater than 12 are considered recovered. (b) The expected localization distribution for BNS detections at six approximate early warning times. No latencies are included in this figure. The inclusion of an end-to-end latency does not shift the histogram itself; the labeled times before merger would all systematically shift instead. Both plots use the BNS rates estimated in Abbott et al. (2020b).