Multi-messenger astronomy in Super-Kamiokande

H. Menjo (Nagoya Univ.) For SK collaboration

Space-Earth Environmental Research

第12回光赤外天文学大学間連携ワークショップ,2021年11月24-26日,オンライン

Super-Kamiokande

Cherenkov light measurement of neutrino interactions using 50,000 t Pure Water

History of "Kamiokande"

ENERGY (MeV

10

Improvement of neutron detection efficiency

Multi-messenger for Transient events

- Alert publication
 - Supernova World-best sensitivity
 - 100% efficiency for events in our galaxy
 - Latency of alert from neutrino burst: ~10min (\rightarrow 1min)
- Follow-up observation
 - Coincidence event search with the events
 - GRBs
 - Blazar TXS0506+056 (IceCube)
 - Solar flares
 - GW <u>GW150914+GW151226</u>, <u>GW170817</u> <u>GW in O3a</u> 01 02

On-time analysis

Off-line

Follow-up "observation" by SK

- Operation 🗠
 - \square 24 hour operation (only ~5% dead time)
 - 4π acceptance (2π for Up-going muon)

SK available for all transient events !!

SK do not need to have a special operation when an alert was received. Only analyze the data corresponding to the event time.

 \Leftrightarrow Telescopes: Pointing, Weather condition, Moon

- Statistics (
- - Very small effective area
 - ~ 10^{-4} cm² @ E_v = 1 GeV
 - ~ 10 cm² @ E_v = 1 TeV

- Difficult to enlarge detector
- Reduce background

Event Categolies

Transient follow-up system

- 1. Receive a GW alert (Notice) via NASA-GCN.
- 2. Wait until realtime reduction data becomes available.
- 3. Process the analysis
 - Search the event in the time window (GW: ±500 sec)
 - P-value estimation

Coincidence event search with GW in O3a

The Astrophysical Journal, Volume 918, Number 2 (2021), <u>arXiv:2104.09196</u>

GW events: GWTC-2

- Third GW operation (O3) from April 2019 to March 2020 $\rightarrow 56 \text{ alerts published via GCN notice}$
- GWTC-2 covers the first half of O3 (April September)
 → 39 confirmed events including some new events from the realtime alerts

For each GW, we have:

- time of the event
- sky localisation
- estimated distance
- estimated masses of the two objects
- can be roughly classified based on masses $(m < 3 M_{\odot} = NS, m > 3 M_{\odot} = BH)$

Coincident event search

- Search window: ±500 sec on GW event time
- Search neutrino candidate events in four samples

Low-energy sample: Comparing the result with the expected background

High-energy sample: Check the reconstructed neutrino direction and GW event localization (GW skymap)

Low-energy sample	FC	High-energy sample PC	s UPMU
Standard solar/SRN selection + 7 MeV energy threshold to ensure stable bkg rate	Standard atmospheric selection		
expected background = 0.729 in 1000 seconds	0.112	0.007	0.016

Nevents in each GW event

Event direction and GW skymap

Significance of each event

 Define the test statistics for separating signal (GW location) and background (uniform) and compute p value

GW190602_175927

The most significant GW+ ν coincidence is for GW190602_175927: p = 0.22%

Considering the number of trials (N = 36 follow-ups), we get a **post-trial** p-value:

P = 7.8%

No significant event was found in this search

Flux limit

Compute the flux upper limit at the observation site.
 assumed the neutrino spectrum of E⁻²

Eiso limit

 E_{iso}: Total energy of neutrino emission at the source assuming isotropic emission.

Prospects of realtime followup by SK

- The realtime process was established in GW-O3.
 - New process to minimize the process time is under development.
 - Defining the procedure to publish the results
- Followup program was under discussion:
 - □ GW-O4: ~1 event per day
 - □ GRB: ~1 event per day
 - High-energy neutrino event by IceCube
 - Novae
 - Solar flare Any suggestions are welcome !!

Summary

- Searched the neutrino events coincident with 39 GW events in GWTC-2.
 - □ The observed events are equivalent to backgrounds.
 - Flux and Eiso upper limited was estimated for each events and total for each GW event categories.
- SK realtime system for follow-up is basically ready for any type of alerts in GCN notice
 - Improvement of process time from ~ 1 day to one hour
 - Define the filter of events for GW in O4 and GRB