
neutrino heating of the surrounding accretion disk (e.g., Metzger &
Fernández 2014; Perego et al. 2014; Martin et al. 2015), but the
velocity of this material 0.1 c is also too low (Table 1).

2.2. Magnetized, Neutrino-heated Wind

A standard neutrino-heated wind cannot explain the
observed properties of the blue KN, but the prospects are
better if the merger remnant possesses a strong magnetic field.
Due to the large orbital angular momentum of the initial binary,
the remnant is necessarily rotating close to its mass-shedding
limit, with a rotation period P=2π/Ω≈0.8–1 ms, where Ω is
the angular rotation frequency. The remnant is also highly
magnetized, due to amplification of the magnetic field on small
scales to 1016 G by several instabilities (e.g., Kelvin–
Helmholtz, magnetorotational) which tap into the free energy
available in differential rotation (e.g., Price & Rosswog 2006;
Siegel et al. 2013; Zrake & MacFadyen 2013; Kiuchi
et al. 2015). As a part of this process, and the longer-term
MHD evolution of its internal magnetic field (e.g.,
Braithwaite 2007), the rapidly spinning remnant could acquire
a large-scale surface field, though its strength is likely to be
weaker than the small-scale field.

In the presence of rapid rotation and a strong ordered
magnetic field, magnetocentrifugal forces accelerate matter
outward from the HMNS along the open field lines in addition

to the thermal pressure from neutrino heating (Figure 1). A
magnetic field thus enhances the mass-loss rate and velocity of
the HMNS wind (Thompson et al. 2004; Metzger et al. 2007),
in addition to reducing its electron fraction as compared to the
equilibrium value obtained when the flow comes into
equilibrium with the neutrinos, Ye,ν (e.g., Metzger et al. 2008c).
A key property quantifying the dynamical importance of the

magnetic field is the wind magnetization

M c

B R f

Mc
, 4M

2 2

tot
3

2
ns
4

open
2

3
T �

' 8
�

8
˙ ˙ ( )

where f BRM open ns
2' � is the open magnetic flux per steradian

leaving the NS surface, B is the average surface magnetic field
strength, fopen is the fraction of the NS surface threaded by open
magnetic field lines, Ṁ tot=fopenṀ is the total mass-loss rate,
and Ṁ is the wind mass-loss rate when fopen=1 limit (which
in general will be substantially enhanced from the purely
neutrino-driven value estimated in Equation (1)). In what
follows, we assume the split-monopole magnetic field structure
( fopen=1), which is a reasonable approximation if the
magnetosphere is continuously “torn open” by latitudinal
differential rotation (Siegel et al. 2014), neutrino heating of
the atmosphere in the closed-zone region (Thompson 2003;
Komissarov & Barkov 2007; Thompson & ud-Doula 2017),
and by the compression of the nominally closed field zone by
the ram pressure of the surrounding accretion disk (Parfrey
et al. 2016). However, our results can also be applied to the
case fopen = 1, as would characterize a more complex magnetic
field structure, provided that the ratio B M f2

open
1r �˙ can be

scaled-up accordingly to obtain the same value of σ needed by
observations.
Upon reaching the fast magnetosonic surface (outside of the

light cylinder), the outflow achieves a radial four-velocity vγ ;
cσ1/3 (Michel 1969). Winds with σ ? 1 thus become
ultrarelativistic, reaching a bulk Lorentz factor γ? 1 in the range
σ1/3  γ�σ, depending on how efficiently additional magnetic
energy initially carried out by Poynting flux is converted into
kinetic energy outside of the fast surface. By contrast, winds with
σ<1 attain subrelativistic speeds given by7
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where in the final line we have taken Rns=15 km and the
factor 3 accounts for the additional conversion of the wind
Poynting flux (two-thirds of its flow energy near the fast
surface) into bulk kinetic energy at larger radii.
Figure 2 shows the values of σ (or, equivalently, asymptotic

four-velocity; top axis) and Ṁ from a suite of steady-state, one-
dimensional, neutrino-heated, magnetocentrifugal wind solu-
tions calculated by Metzger et al. (2008c) for an assumed
neutrino luminosity L 1.6 1052x qO erg s−1, similar to that
from the hot post-merger remnant at early times ∼0.1–1 s after

Figure 1. Schematic diagram of the neutrino-irradiated wind from a
magnetized HMNS. Neutrinos from the HMNS heat matter in a narrow layer
above the HMNS surface, feeding baryons onto open magnetic field lines at a
rate that is substantially enhanced by magnetocentrifugal forces from the purely
neutrino-driven mass-loss rate (e.g., Thompson et al. 2004; Metzger et al.
2007). Magnetic forces also accelerate the wind to a higher asymptotic velocity
v≈vB≈0.2–0.3 c (Equation (5)) than the purely neutrino-driven case v 
0.1 c (Equation (2)), consistent with the blue KN ejecta. Though blocked by the
accretion disk directly in the equatorial plane, the outflow has its highest rate of
mass-loss rate, kinetic energy flux, and velocity at low latitudes near the last
closed field lines (Vlasov et al. 2014). The wind velocity ∝σ1/3 ∝ B2/3/Ṁ1/3

may increase by a factor of ∼2 over the HMNS lifetime (Figure 4) as its mass-
loss rate Ṁ subsides, or its magnetic field B is amplified, resulting in internal
shocks on a radial scale R vt t10 1ssh rem

10
rem_ _ ( ) cm, substantially larger

than the wind launching point. This late re-heating of the ejecta leads to
brighter KN emission within the first few hours after the merger (Figure 3).
Relativistic breakout of the shocks as the magnetar wind becomes
transrelativistic on a similar timescale might also give rise to gamma-ray
emission.

7 This result can be understood to order of magnitude by noting that
vB≈RAΩ, where RA is the Alfvén radius at which B2/8π≈ρ v2/2, where v
and ρ=Ṁ/4πvr2 are the velocity and density of the wind at radius r
(Thompson et al. 2004).
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