Galactic Supernova Detection with EGADS/HEIMDALL

Lluís Martí-Magro (Yokohama National University) for the EGADS group. Synergies at new frontiers, Kashiwa, Japan. March 24th, 2022.

Transient events

- There are many kind of transient events:
 - Pulsating stars
 - Novae
 - Thermonuclear supernovae
 - Core collapse supernovae
 - Kilonovae
 - Black hole mergers
 - Blazars, AGNs and the like

Transient events

- There are many kind of transient events:
 - Pulsating stars
 - Novae
 - Thermonuclear supernovae
 - Core collapse supernovae

This will be our main topic here!

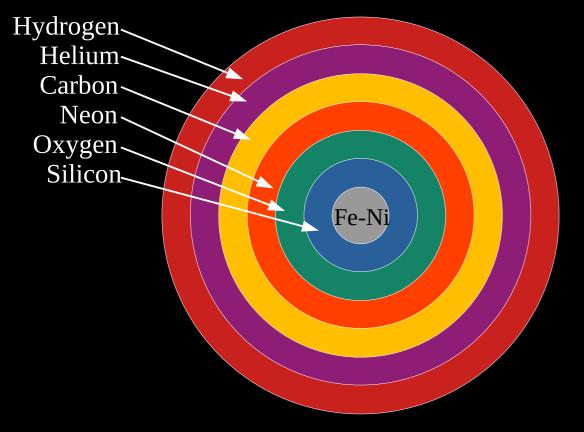
- Kilonovae GW, photons & neutrinos: a true multi-messenger event!
- Black hole mergers
- Blazars, AGNs and the like

Transient events

- There are many kind of transient events:
 - Pulsating stars
 - Novae
 - Thermonuclear supernovae
 - Core collapse supernovae

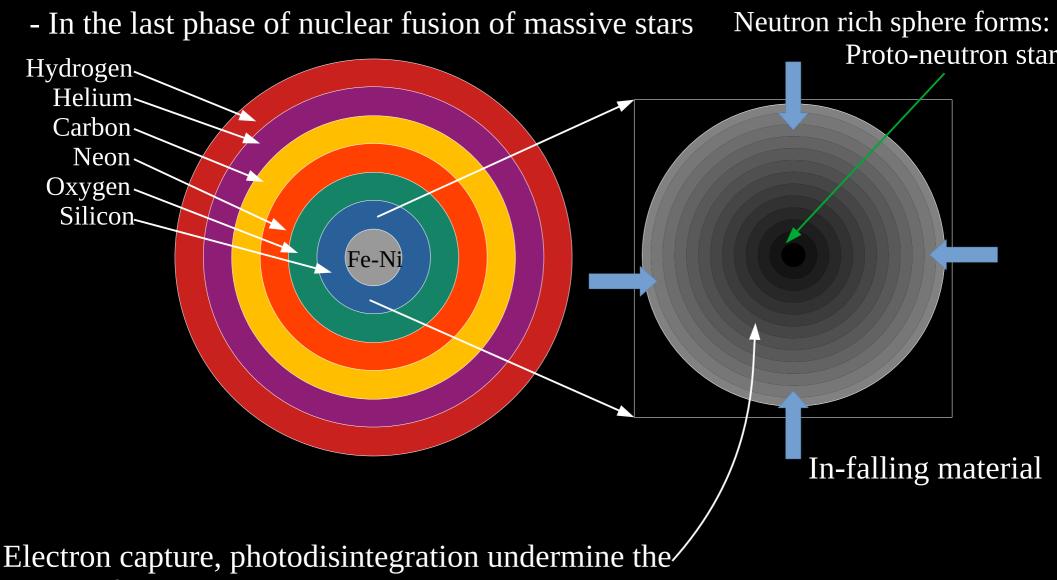
This will be our main topic here!

- Kilonovae GW, photons & neutrinos: a true multi-messenger event!
- Black hole mergers
- Blazars, AGNs and the like

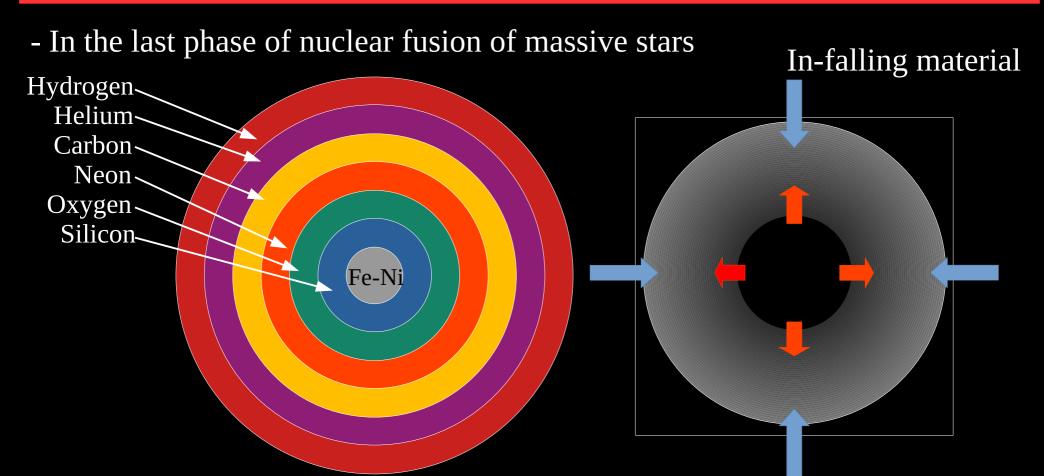

The important ingredients towards understanding transients are:

- \rightarrow early observation <u>from the onset</u>.
- \rightarrow observe them in all the possible ways: <u>multi-messengers</u>

 \rightarrow <u>ensure the above</u> happens: as many detectors for all messengers and avoid dead time overlap


CC supernovae in a nutshell

- In the last phase of nuclear fusion of massive stars


At some point stellar cores are no longer supported by nuclear fusion against gravity \rightarrow the core collapses

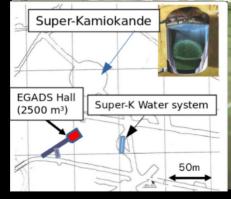
CC supernovae in a nutshell

ability of the core to hold the collapse.

CC supernovae in a nutshell

Neutron degeneracy tries to halt the collapse: in case of success a shock wave propagates to the outer layers of the star and we observe a supernova.

→ In simulations, the <u>shock wave tends to stall</u>: possible mechanisms to reinvigorate it: neutrino radiation and/or aspherical hydrodinamic turbulence (convective instability and standing accretion shock instability), others (?)


And all this in about a second....

EGADS: birth of a new detector

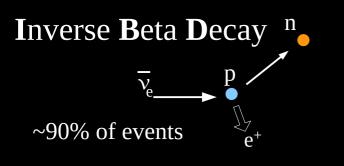
Evaluating Gadolinium's Action on Detector Systems R&D test facility to prove Gd related techniques for SuperK (SK-Gd)

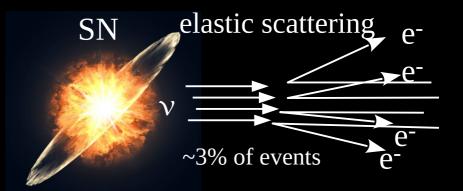
Dissolution and pre-treatment system

Fast recirculation system

 Nore infos here:

 arXiv:1908.11532v1


 arXiv:2109.00360v3


Detection requirements

Expected numbers for galactic SN bursts*:

```
<u>Betelgeuse</u> (~200 pc)
    25-65 · 10<sup>3</sup> IBD
    800-2000 elastic scattering \lesssim 1 elastic scattering
```

Galactic center (~8 kpc) 15-40 IBD

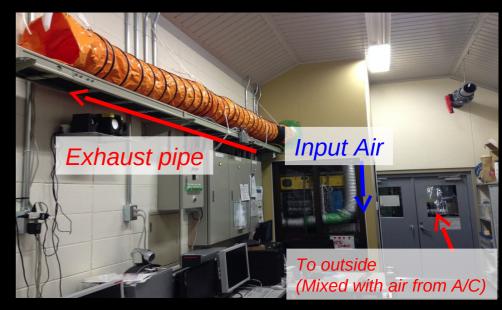
• The event rate can be very high for a close SN: \rightarrow Could our DAQ withstand the high rates of a close SN?

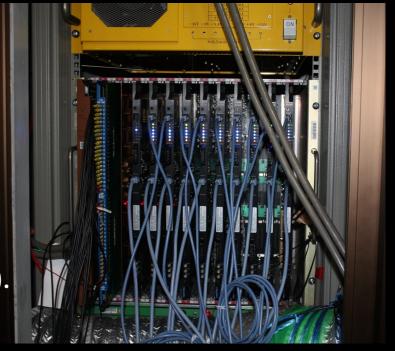
• The number of expected events decreases with distance:

 \rightarrow Can we efficiently detect a SN in the far side of our galaxy?

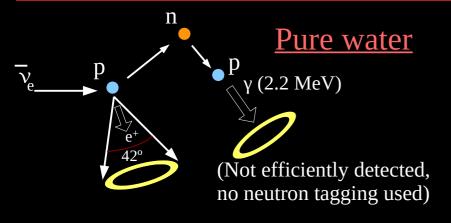
* Nakazato et al. (ApJ Supp. 205, 2 (2013)) 20M

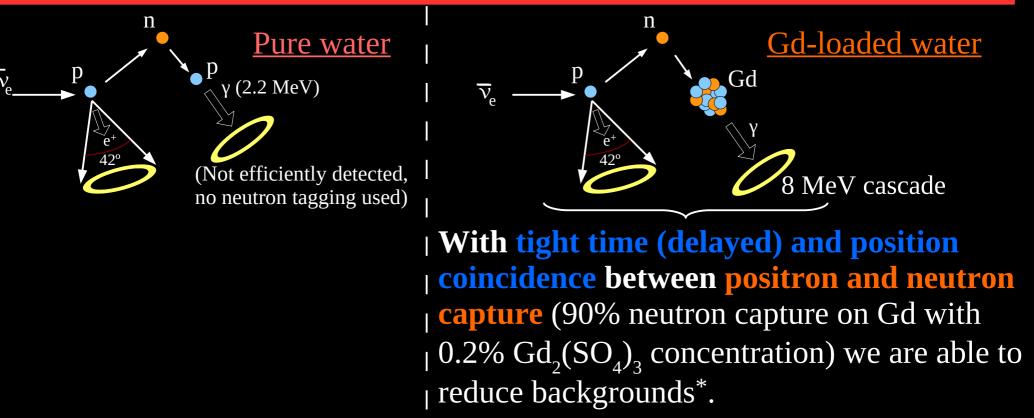
PMT and electronics installation




Summer 2013 240 PMT installation 10

PMT and electronics installation


- DAQ runs with very high livetime (> 99%).
- Temperature stable within $\sim 1^{\circ}$ C.
- DAQ and slow control monitor checks every 2 hours by shifters:
 - detector compensation coils.
 - PMT HV (CĀEN).
 - DAQ status.
- Automated warning emails to experts in case of problems.
 - June 2017: front-end electronics were upgraded to withstand the high event rates needed to withstand a close SN.
 - \rightarrow QBEE front-end electronics:
- QTC (Charge to time converter) Based Electronics with Ethernet.
 - Capability for higher event rates (~ few MHz).
 - All hits can be collected.



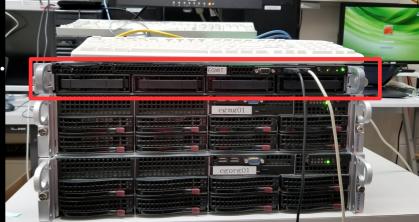
11

Efficient neutron tagging

Efficient neutron tagging

- Neutrinos from ccSNe are detected mostly from IBD events.
- Being able to efficiently detect neutrons reduces backgrounds.
 - \rightarrow Detecting a few of them are enough to trigger a SN confidently.
- EGADS current Gd concentration is 0.03% (75% of captures on Gd).
 → It will be loaded to the final concentration of 0.1% Gd in the future (90% captures on Gd).

^{*}Idea proposed as GADZOOKS! by Beacom & Vagins PRL.93, (2004) 171101

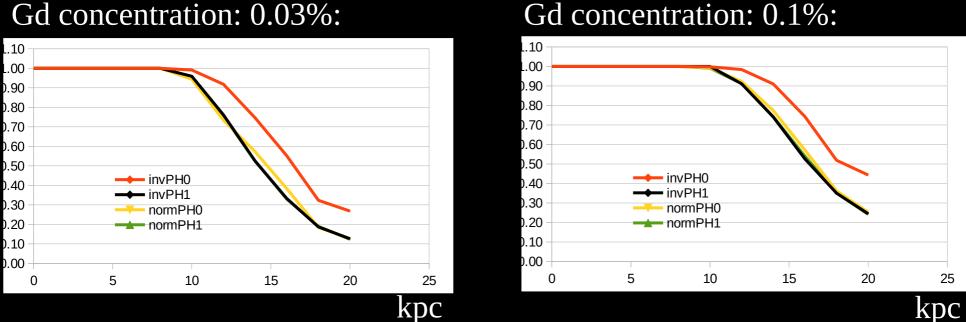

HEIMDALL

High Efficiency IBD Monitoring Detector and Automated caLL

HEIMDALL is an online machine that searches for IBD (prompt + delayed neutron capture) events in real time:

- If \geq 3 events (within 10 sec) are detected, a SN automated alarm is issued.
- \rightarrow Latency time \simeq 5 seconds
- \rightarrow False alarm rate: 1 per decade (at threshold).

28-core/56-hyperthreaded CPU cores at 2.6 GHz. 128 GB of RAM.


- EGADS/HEIMDALL is watching for SNe:

 \rightarrow HEIMDALL watches for galactic SNe and would give an instant, automatic and independent alert to us and the community.

- → detection status is <u>open to everybody</u> at: http://egads.epizy.com/SNmonitor.html
- → **automated SN warning mails** at: martillu_at_suketto.icrr.u-tokyo.ac.jp

SN detection efficiencies

- Calculated the SN detection efficiency: Nakazato model for: M=13, Z=0.02 trev=100 ms. IBD in 10 sec threshold > 3

Gd concentration: 0.03%:

kpc "inv" for inverse and "norm" for normal neutrino hierarchy. PH: 0 adiabatic transitions, 1 w/o

Good galactic coverage already with the current concentration.

Evaluating G adolinium's Action on Detector S ystems Employing Gadolinium to Autonomously Detect Supernovas

Public EGADS/HEIMDALL status

- Available for anyone. Check: http://egads.epizy.com/SNmonitor.html
- The HEIMDALL status is updated within < 2 minutes
 - However, in case of SN: updated immediately after SN burst detection.
 - Includes an audible alarm.

200-ton EGADS/HEIMDALL

Galactic Supernova Monitor

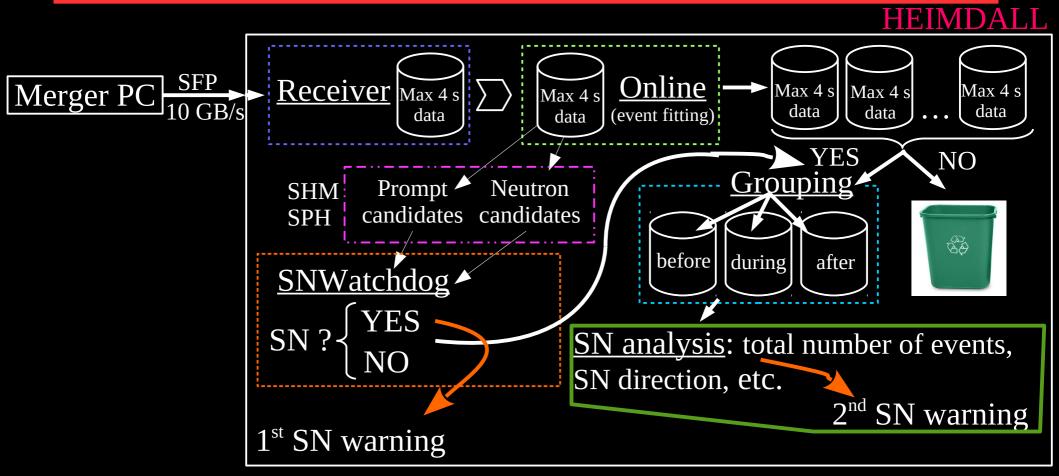
Page loading time (local time):	Monday, 8 November 2021 13:12:08	
HEIMDALL status update time (JST):	Monday, 8 November 2021 13:11:47	
Status: No supe	ernova detected	
HEIMDALL update time	Page loading time should be ~ 2 seconds HEIMDALL update time should be < 2 minutes (In case of supernova alarm will fired within < 10 seconds from the burst onset)	
	After a supernova, more information is sent by email within about less than 30 minutes. you want to receive them or have questions/suggestions send an email to: martillu_at_suketto.icrr.u-tokyo.ac.jp	
Sound	I Test	

Feel free to check and spread the word!!

Summary and information

EGADS/HEIMDALL:

- \rightarrow 200-ton Gd loaded detector with good ccSNe coverage in our galaxy:
 - \rightarrow can withstand the high event rates of close ccSNe.
- \rightarrow high neutron high efficiency detection (thanks to Gd) enables
- background suppression for the most important reaction in case of ccSN (IBD).


→ just 3 or more IBD are enough to claim detection.

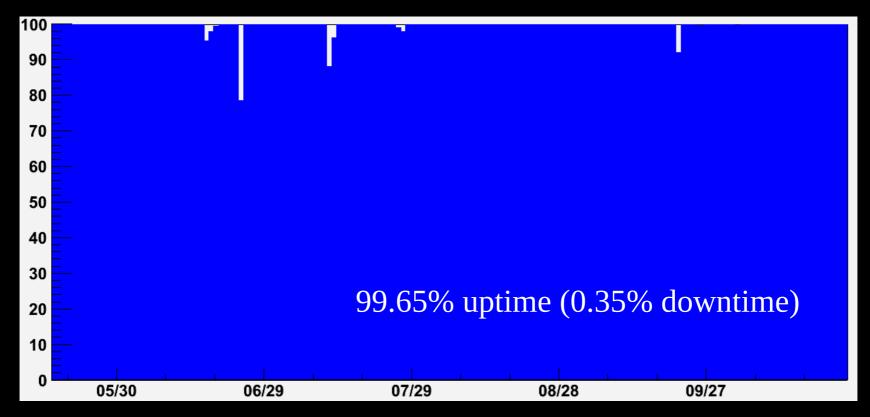
- \rightarrow very short lead time (~5 seconds from neutrino burst onset).
 - Minutes can be precious for telescopes!
- \rightarrow very high life time (> 99%).
- \rightarrow coming soon: SN direction capabilities for close ccSNe.

Useful information:

→ detection status is <u>open to everybody</u> at: http://egads.epizy.com/SNmonitor.html
 → automated SN warning mails at: martillu_at_suketto.icrr.u-tokyo.ac.jp

HEIMDALL Data treatment

- HEIMDALL keeps ~8 minutes of raw data. In case of SN:


- Framework for SN analysis <u>done</u>:

 \rightarrow Number of events, number of IBD events and coarse calculation of SN direction has been implemented (equatorial coordinate system & 200x200 bins for α and δ)

 \rightarrow Now, implementing a SN direction fit à la SK.

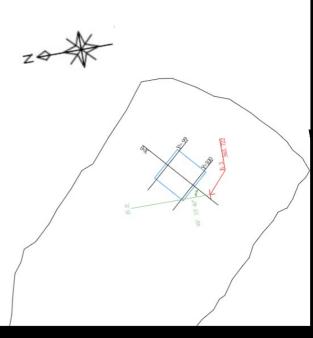
Lifetime since last CM

Very high lifetime for EGADS/HEIMDALL (May 17th – Oct 25th 2021):

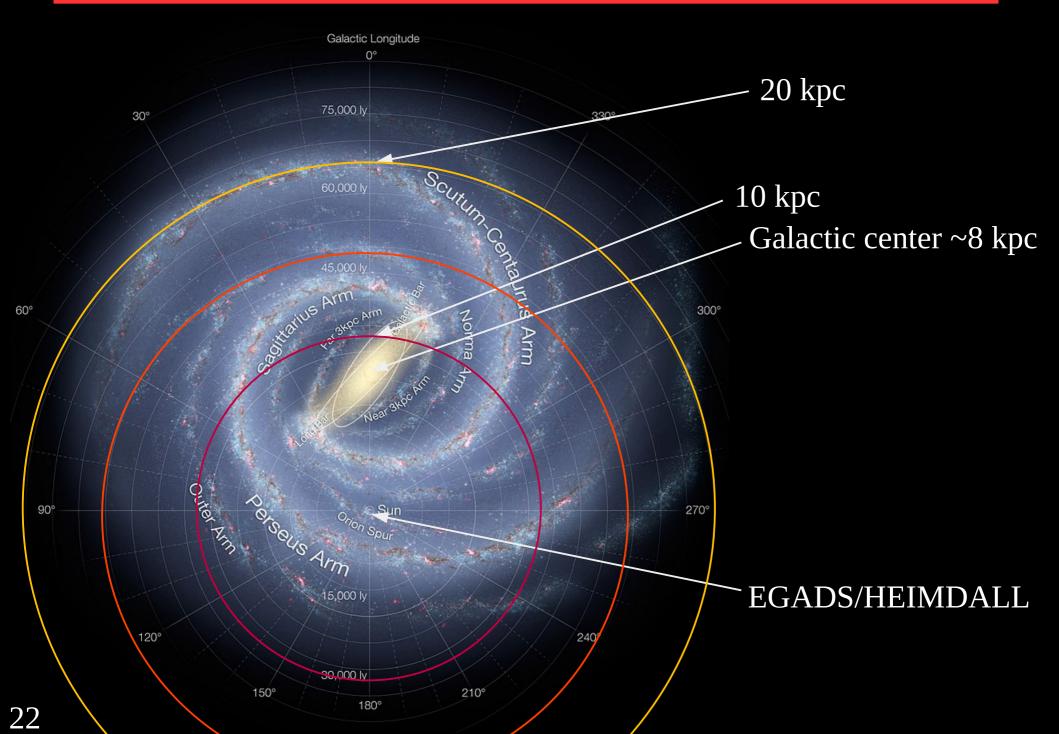
- Simultaneous HEIMDALL/SK SN downtime: 365 sec on June/18: Problems with EGADS channel 220 && SK ID channel 2530.

▶ 0.003% simultaneous HEIMDALL/SK downtime.

Pointing to SN


- In case of a close enough SN EGADS/HEIMDALL could point to a SN by using elastic scattering events.

- To provide this capability, we must know the relative position of the EGADS coordinate system to the celestial coordinate system:


 \rightarrow Determination of the direction to the North done last February.

EGADS/HEIMDALL in the galaxy

HEIMDALL introduction/motivation

Expected numbers for galactic SN bursts*:

<u>Betelgeuse</u> (~200 pc) 25-65 ⋅ 10³ IBD 800-2000 elastic scat. $\frac{\text{Galactic center}}{15-40 \text{ IBD}} \lesssim 1 \quad \text{elastic scat.}$

- EGADS/HEIMDALL watches in real time for galactic SNe:

 \rightarrow For close SNe: new electronics allow acquisition of high event rates

 \rightarrow Far SNe: neutron tagging with Gd, i.e. detecting a few IBD-compatible events will tell us a SN happened

 \rightarrow HEIMDALL watches for galactic SNe and will give an instant, automatic and independent alert to us and the community