F28：
 新しい宇宙線空気シャワー シミュレーションコードの開発 （COSMOSの開発と将来の展開）

﨏 隆志（東大ICRR）

査定額と共同研究者

- 査定額 10万円（旅費）•繰越分 16.7 万円
- 月例実務者会議
- 3 月末のCOSMOS講習会•空気シャワー勉強会
- 大型計算機利用
- 共同研究者

常定芳基（大阪市大），毛受弘彰（名大），櫻井信之（徳島大），
吉越貴紀，大石理子，野中敏幸，武多昭道，西山竜一，釜江常好（東大），木戸英治，榊直人（理研），笠原克昌（芝工大），藤井俊博（京大），芝田達伸，板倉数記（KEK），大嶋晃敏，山崎勝也（中部大），日比野欣也，有働慈治（神大），
多米田裕一郎（大阪電通大），奥田剛司（立命館大），奈良寧（国際教養大），
土屋晴文（原子力機構）

活動内容（COSMOS開発）

－2013年末，有志による「モンテカルロシミュレーション研究会」として発足 （2014年から共同利用）

- COSMOS8 GFortran版の公開，ICRR webサーバーでの公開
- cmake compileの実現
- 「空気シャワ一観測による宇宙線の起源探索勉強会」（シニア＋学生セッ ション）を毎年開催
- 共同研究者で分担し，多様な環境でのコンパイルと動作試験
- マイナーアップデート（環境依存を多数発見）
- Web page，manual，サンプルコード等の改良
- 非気体媒質•非地球大気での計算可能な改良（ただし同心球殻）
- CORSIKA WSでの講演
- 今年度（後述）
- 新バージョン COSMOS Xの公開
- ICRC2021で発表
- 若手向け講習会
- 月例会議で Debug，etc．．．

COSMOS X公開

- http://cosmos.icrr.u-tokyo.ac.jp/COSMOSweb/

| cosmos Top

Now brand-new version of COSMOS,COSMOS X, is avallable.Enjoy it. Your feedbacks are welcome.
For old COSMOS version $<=8$, please go to the original page.
Welcome to COSMOS, a cosmic-ray air shower MC simulataion code
COSMOS is...

COSMOS X Manual

 COSMOS X development team November 18, 2021
Contents

1 What is COSMOS X?
1.1 What can we do with COSMOS X?
1.2 Structure
1.2.1 General structure
1.2.2 Users' flexibility: 3 user control files
1.3 What we can not do (now)?

2 How to use COSMOS X for the first time?
2.1 Environment
2.2 Download
2.3 Installation
2.4 Test program (First Kiss)
2.4.1 Compile and Run
2.4.2 Track visualization
2.4.3 Userhook output

How to edit the user control files?
3.1 primary file
3.2 param file
3.3 userhook function

4 How to optimize my simulation?
4.1 Hadronic interaction model ON GOING
4.2 Thinning
4.3 AS, hybrid method
4.4 Magnetic field
4.5 Electric field
4.6 Non-air material, non-earth sphere

ICRC2021で報告

COSMOS X as a general purpose air shower simulation tool

T．Sako，${ }^{a}$ T．Fujii，${ }^{b, c}$ K．Kasahara，${ }^{d}$ H．Menjo，${ }^{e}$ N．Sakaki，${ }^{f}$ N．Sakurai，${ }^{g}$ A．Taketa，${ }^{\text {h }}$ Y．Tameda ${ }^{i}$ for the COSMOS X development team
${ }^{a}$ Institute for Cosmic Ray Research，the University of Tokyo，${ }^{b}$ Hakubi Center for Advanced Research，Kyoto University，${ }^{c}$ Graduate School of Science，Kyoto University，${ }^{d}$ Faculty of Systems Engineering and Science，Shibaura Institute of Technology，${ }^{e}$ Institute for Space－Earth Environmental

－Air shower MC simulation tool becomes more and more important in CR physics －PID，muon puzzle，LHC，thunder cloud，solar gamma rays，etc．．．
－COSMOS is an air shower MC simulation tool with flexible user control functions
－Combining with a detector simulation tool EPICS，extended COSMOS，COSMOS X，is born

COSMOS User Interface

COSMOS User Interface

西村先生テキスト

電磁相互作用の基礎とその応用

－宇宙線現象の解釈のために一

- 2015年の講義をテキスト化
- 希望者に配布予定（印刷＋電子版）

西村 純
2021年7月15日
目次
｜基礎的な物理量 3
I－1 長さの単位3
I－2 相互作用の断面積4
I－3 Mean Free Path（平均自由行程） 4
I－4 Retarded Potential（Lienald－Wiehelt Potential）7
I－5 Poynting Vector：Energy Flow／cm ${ }^{2}$ s 7
II 解析に当たってよく使われる数学的手法 8
II－1 複素積分 8
II－2 解析接続 9
II－3 関数変換 10
II－4 ラプラス変換（Laplace 変換） 13
II－5 メラン変換（Mellin 変換） 14
1－6 Convolution（畳み込み積分） 15
II－7 複素積分の数値評価（直接数値積分と鞍点法） 16
III 電磁基礎過程 18
III－1 Thomson 散乱 18
III－2 Rutherford 散乱 19
III－3 輻射過程 20
III－4 チェレンコフ効果 22
まとめ

- COSMOSXの公開
- 「非」大気，「非」地球への対応
－http：／／cosmos．icrr．u－tokyo．ac．jp／COSMOSweb／
で公開中（マニュアル・サンプル・可視化）
- 月例会議で実務継続
- COSMOSXの普及
- マニュアル・サンプルの更新
- 若手むけ講習会の予定（3／22を予定）
- 西村先生の講義録出版予定
- COSMOSXを使った物理
- 新しい空気シャワー実験のデザイン（with 土，水，氷）
- 太陽大気でのガンマ線，ニュートリノ，中性子生成

ご支援ありがとうございます。
初心者ユーザーのご意見歓迎。卒業研究等のテーマにもどうぞ。

水中のミュ一粒子

- 電磁シャワーは計算しない（縦発達だけB近似で代用）オプション
- Muon，hadronのみ計算，表示
- ＜4300mは水

'primary' file

Primary definition

Of course, mono energy, simple power law are simpler

, p'	' GeV'	' KE/n'	, d'	0
	0.1	1. 2		
	0. 2	1.5		
	. 3	1.7		
	. 4	1.9		
	. 5	1.93		
	. 6	1.9		
	. 8	1.8		
	1.5	1.5		
	2.	1. 25		
	3.	. 8		
	4.	. 55		
	10.	. 1		
	20.	. 02		
	100.	2. $8 \mathrm{e}-4$		
	0	0		
' He'	$\begin{aligned} & ' \mathrm{GeV} ' \\ & .1 \end{aligned}$	$\begin{aligned} & . \mathrm{KE} / \mathrm{n} \\ & . \\ & \hline \end{aligned}$	' d'	0 /
	. 2	1.		
	. 4	1.2		
	. 6	1. 25		
	. 8	1. 2		
	1.	1. 15		
	2.	. 7		
	5.	0.35		
	10.	0.065		
	30.	. 008		
	100.	2. e^{-4}		
	0	, 0		
' CNO '	$\begin{gathered} \mathrm{GeV}^{\prime} \\ .1 \end{gathered}$	$\begin{aligned} & \text { ’ KE/n’ } \\ & .013 \end{aligned}$	' d'	0 /
	. 2	. 28		
	. 3	. 4		
	. 5	. 65		
	. 8	. 8		
	1.	. 85		
	1. 3	. 88		
	2.0	. 75		
	4.	. 35		
	6.	. 2		
	10.	. 07		
	20.	. 012		13
	0	0		

（R．Nishiyama，A．Taketa，S．Miyamoto，K．Kasahara，Geophys．J．Int．

最近の応用例：Muography

（R．Nishiyama，A．Taketa，S．Miyamoto，K．Kasahara，Geophys．J．Int． （2016）206）

最近の応用例：
 by K．Ohashi（LHCf，Nagoya）

－ $1^{\text {st }}$ interaction category and $<X_{\text {max }}>$

Extra-Terrestrial Air showers !? -- proposed application --

T. Linden et al., PRL 121, 131113 (2018)

- Fermi/LAT observation
- GCR + solar atmosphere
A.Abdo et al., ApJ, 734:116 (10pp), 2011

- Time dependent energy spectrum, emission region
- GCR + solar magnetic field + interaction with H, He, ...
- Quantitative explanation by COSMOS?

Toy Magnetic Field

More applications?

Tracking in strong magnetic field
Air showers in other planets

