

南野彰宏(横浜国立大学) 東京大学宇宙線研究所共同利用成果発表会 2022年1月25日

•研究の概要

- •環境中性子の測定
- •岩盤中水分量測定
- •まとめと今後の予定

- •2014年度に中性子測定コンソーシアムとして活動開始。
- 目的:実験グループを跨いで技術・機材などを共有し、
 多地点・長期測定を行い、結果を公表・共有すること。

環境中性子の測定

熱中性子: <0.5 eV、高速中性子: >1 MeV

- ◎ 熱中性子に高い感度。
- △ 高速中性子は減速後間接的に測定。

3He比例計数管

- 測定場所: 神岡地下実験室Lab-B
- ・測定期間:2021年7月9日から2022年1月21日

岩澤 (早大)

- 高速中性子を直接測定
- PSD(波形弁別法) が得意
 - 原子核反跳と電子反跳を分離
 - α線バックグラウンドがやっかい

岩澤 (早大)

8

液体シンチレーター検出器

²²²Rnの染み出し低減化 電解複合研磨(ECB) 電気化学的&研磨剤による研磨

電気化生的低所活用による所活 神岡Rn検出器の技術

J. of Phys. Conf. Series 469 (2013) 012007, PTEP 2015, 033H01, etc

純化した液体シンの移送

Bi-Po α線レート

²¹⁴Poの半減期が短いためΔtで強力に事象選択可

* 小津龍吉、早大修論(2020)Geant4 による

岩澤 (早大)

解析的にα線BGを取り除く

液体シンチレーター検出器

・よりRnを低減した検出器 → 表面処理方法の変更を検討

岩澤(早大)

→皮膜が厚くなることでRnの染み出し低減を期待

岩盤中水分量の測定

KAGRAトンネルの排水量モニタ

G09 "KAGRAにおける環境由来のノイズ削減に関する研究"

- 神岡の地下水モニターは極低BG実験だけでなく、KAGRAの重力波 観測でも重要である(水流による重力場雑音)
- KAGRAでは2021年度から新たな水流計を導入し、1分サンプルの 常時測定を行っている。
 - これまでは神岡鉱業による1日1回測定(エクセルシート)のみ
- 今後、環境中性子フラックスの季節変動との相関を調査予定

鷲見 (天文台)

まとめと今後の予定

- ・まとめ
 - ³He比例計数管で測定中
 - •液体シンチレーター検出器のバックグラウンドを低減中
 - •神岡地下岩盤中の水分量を測定中
- 今後の予定
 - 複数の検出器で同時測定を行う。
 - •測定結果と岩盤中水分量との相関を調べる。
 - ・測定結果とシミュレーションを比較する。

バックアップ

• 中性子測定コンソーシアム

7つの実験グループ

- ・大阪大学:CANDLES
- ・神戸大学:NEWAGE
- ・東京大学:XMASS
- ・東北大学:KamLAND
- ・名古屋大学:NEWSdm
- ・早稲田大学:ANKOK
- ・横浜国立大学:SK-Gd

5つの検出器

- ・³He比例計数管
- ・液体シンチレータ
- ・原子核乾板
- ・⁶Liドーププラスチックシンチレータ
- ・BF³比例計数管

佐々木(横国)+水越(神戸) *2020年度に実施

データ収集系(DAQ)を小型化*。
様々なサイトでの測定が容易になった。

19

環境中性子シミュレーション(発生)

- 岩盤中RIと岩盤の(α, n)反応: NeuCBOT*
- ²³⁸Uの自己核分裂: Watt Spectrum

表 5.1: 神岡坑内における岩石成分の重量比(%)

	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	P ₂ O ₅	SO ₃	ZnO	
Sample 1	35.75	11.35	10.95	1.09	0.99	39.37	0.02	0.35	0.10	0.03	
Sample 2	33.74	0.74	23.94	4.63	1.92	34.35	0.32	0.02	0.17	0.17	
Sample 3	25.62	0.25	19.32	3.73	1.16	41.54	0.00	0.02	3.01	5.35	
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	P ₂ O ₅	TiO ₂	K ₂ O	H ₂ O
JR-1	75.45	12.83	0.91	0.10	0.12	0.67	4.02	0.02	0.11	4.41	1.36
JA-3	62.27	15.56	6.38	0.10	3.72	6.24	3.19	0.12	0.70	1.41	0.31

* https://github.com/shawest/neucbot

・岩盤中の中性子の輸送: Geant4

• 岩盤中の水分量が増えると熱中性子が増え、高速中性子が減る。

現行検出器における課題

dtの条件のみでは中性子効率を大幅に削ってしまう。 →条件に検出位置、エネルギーの情報を入れることにより改善を期待

条件を決めるためシミュレーションによる理解が重要となる

