宇宙線望遠鏡による 極高エネルギー宇宙線の研究

die delait

共同利用研究課題

研究费 旅费 計

			町九貝	小八頁	
F05	佐川宏行	宇宙線望遠鏡による極高エネルギー宇宙線の研究	0	855	855
C01	野中敏幸	TA実験サイトでの超高エネルギー宇宙線観測のための多チャ ンネル粒子弁別測定システムの開発	240	90	330
F06	有働慈治	TA実験サイトにおける大気透明度測定法の研究・開発	29	285	314
F07	木戸英治	TAx4実験地表検出器の安定稼働のための研究開発	0	0	0
F08	荻尾彰一	TALEハイブリッド実験による10の17乗eV領域宇宙線の研究	0	380	380
F09	冨田孝幸	ドローンに搭載された標準光源による大気蛍光望遠鏡の光学 系較正の評価	0	238	238
F10	山崎勝也	大気蛍光望遠鏡の自動観測を目指した夜間雲量測定用CCD カメラの開発と解析	143	190	333
F11	竹田成宏	TA-FD観測の完全遠隔制御にかかる観測サイトでの環境整備	96	208	304
F13	藤井俊博	TA実験サイトでの新型大気蛍光望遠鏡による極高エネルギー 宇宙線観測	0	238	238
F14	多米田裕一郎	次世代の超高エネルギー宇宙線観測のためのフレネルレンズ 型大気蛍光望遠鏡の開発研究	114	426	540
F15	奥田剛司	片側読み出しシンチレーション検出器による放射線入射位置 測定	440	100	540
11件	4,072千円	ご支援ありがとうございます。今後ともよろしくお願いいナ	こします	o	2

Telescope Array Experiment

 Origin and properties of the **Ultra-High Energy Cosmic** Rays - spectrum, composition, anisotropy

- Physics of HE hadronic interactions
- photons, neutrinos, ...
- Interdisciplinary studies - thunderstorms, TGFs

Telescope Array Delta, Utah, USA. ~1400 m a.s.l Collaborators from HiRes, AGASA, and other institute

• Development of the next generation experiments

Telescope Array Experiment

R.U. Abbasi^{1,2}, M. Abe³, T. Abu-Zayyad^{1,2}, M. Allen², Y. Arai⁴, R. Arimura⁴, E. Barcikowski², J.W. Belz², D.R. Bergman², S.A. Blake², I. Buckland², R. Cady², B.G. Cheon⁵, J. Chiba⁶, M. Chikawa⁷, T. Fujii⁸, K. Fujisue⁷, K. Fujita⁴, R. Fujiwara⁴, M. Fukushima⁷, R. Fukushima⁴, G. Furlich², R. Gonzalez², W. Hanlon², M. Hayashid¹⁰, K. Hibino¹⁰, R. Higuchi⁷, K. Honda¹¹, D. Ikeda¹⁰, T. Inadomi¹², N. Inoue³, T. Ishii¹¹, H. Ito¹³, D. Ivanov², H. Iwakura¹², A. Iwasaki⁴, H.M. Jeong¹⁴, S. Jeong¹⁴, C.C.H. Jui², K. Kadota¹⁵, F. Kakimoto¹⁰, O. Kalashev¹⁶, K. Kasahara¹⁷, S. Kasami¹⁸, H. Kawai¹⁹, S. Kawakami⁴, S. Kawana³, K. Kawata⁷, I. Kharuk¹⁶, E. Kido¹³, H.B. Kim⁵, J.H. Kim², J.H. Kim², M.H. Kim¹⁴, S.W. Kim¹⁴, Y. Kimura⁴, S. Kishigami⁴, Y. Kubota¹², S. Kurisu¹², V. Kuzmin¹⁶, M. Kuznetsov^{16,20}, Y.J. Kwon²¹, K.H. Lee¹⁴, B. Lubsandorzhiev¹⁶, J.P. Lundquist^{2,22}, K. Machida¹¹, H. Matsumiya⁴, T. Matsuyama⁴, J.N. Matthews², R. Mayta⁴, M. Minamino⁴, K. Mukai¹¹, I. Myers², S. Nagataki¹³, K. Nakai⁴, R. Nakamura¹², T. Nakamura¹², Y. Nakamura¹², A. Nakazawa¹², T. Nonaka⁷, H. Oda⁴, S. Ogio^{4,24}, M. Ohnishi⁷, H. Ohoka⁷, Y. Oku¹⁸, T. Okuda²⁵, Y. Omura⁴, M. Ono¹³, R. Onogi⁴, A. Oshima⁴, S. Ozawa²⁶, I.H. Park¹⁴, M. Potts², M.S. Pshirkov^{16,27}, J. Remington², D.C. Rodriguez², G.I. Rubtsov¹⁶, D. Ryu²⁸, H. Sagawa⁷, R. Sahara⁴, Y. Saito¹², N. Sakaki⁷, T. Sako⁷, N. Sakurai⁴, K. Sano¹², K. Sato⁴, T. Sekin⁷, P. Dshah², Y. Shibasaki¹², F. Shibata¹¹, N. Shibata¹⁸, T. Shibata⁷, H. Shimodaira⁷, B.K. Shin²⁸, H.S. Shin⁷, D. Shinto¹⁸, J.D. Smith², P. Sokolsky², N. Sone¹², B.T. Stokes², T.A. Stroman², T. Suzawa³, Y. Takagi⁴, T. Takagi⁴, T. Takagi¹², P. Tinyakov^{16,20}, I. Tkachev¹⁶, H. Tokuno³², T. Tomid

¹ Loyola University Chicago ² University of Utah ³ Saitama University ⁴ Osaka City University ⁵ Hanyang University ⁶ Tokyo University of Science ⁷ University of Tokyo (ICRR) ⁸ Kyoto University ⁹ Shinshu University ¹⁰ Kanagawa University ¹¹ University of Yamanashi ¹² Shinshu University (Inst. of Engineering) ¹³ RIKEN ¹⁴ Sungkyunkwan University ¹⁵ Tokyo City University ¹⁶ Institute for Nuclear Research of the Russian Academy of Sciences ¹⁷ Shibaura Institute of Technology ¹⁸ Osaka Electro-Communication University ¹⁹ Chiba University ²⁰ Université Libre de Bruxelles ²¹ Yonsei University ²² University of Nova Gorica ²³ Kochi University ²⁴ Osaka City University (Nambu Yoichiro Institute) ²⁵ Ritsumeikan University ²⁶ National Inst. for Information and Communications Technology, Tokyo ²⁷ Lomonosov Moscow State University ²⁸ Ulsan National Institute of Science and Technology ²⁹ University of Tokyo (Earthquake Inst.) ³⁰ Hiroshima City University ³¹ KEK ³² Tokyo Institute of Technology ³³ National Instit. for Quantum and Radiological Science and Technology ³⁴ CEICO, Institute of Physics, Czech Academy of Sciences ³⁵ Ewha Womans University

Telescope Array Experiment

• 2021年度 TA 実験関連論文

"Surface detectors of the TAx4 experiment"

Nuclear Inst. and Methods in Physics Research, A 1019, 165726, (2021.12)

"The Cosmic-Ray Composition between 2 PeV and 2 EeV Observed with the TALE Detector in Monocular Mode" The Astrophysical Journal, 909, 178, (2021.03)

投稿済み

"Observation of Variations in Cosmic Ray Single Count Rates During Thunderstorms and Implications for Large-Scale Electric Field Changes"

Phys. Rev. D (accepted)

"Indications of a Cosmic Ray Source in the Perseus-Pisces Supercluster"

SD status

- 2008/05 ~
- remote monitoring
 - US and JP monitor the status for half a month each

• FD status

- 2007/11 ~
- 2013/07 ~
 - remote operation from Delta
- 2019/11 ~
 - remote operation from JP
 - 2 standby members required
- 2020/03 ~ COVID-19
- BR : commercial power line will be connected

• TALE (TA Low energy Extension)

TALE SD & TALE hybrid status ~70/80 SDs are working on average

• TAx4

- Quadruple SD array
 - Total ~3,000km²
 - 500 SDs, 2.08km spacing
 257 SDs at present
 - started observation since 2019/11

– FD

- 2 new FD stations HiRes-II telescopes
 - TAx4 FD North (MD) 2018/07 ~
 - trigger improvement
 2019/06 ~

11

– TAx4 FD South (BR) 2020/07 ~

TAx4 FD status

- MD (North)
 - In-person operation
 1400 hours total,
 - ~1000 hours Good Wheather
- BR (South)
 - Remote operation from SLC, JP
 800 hours total,
 500 hours Good Wheather

• TAx4 SD status - SD DAQ runs stably for ~2years

Analysis : Energy Spectrum

- TA SD + TALE FD
- TALE hybrid
- TAx4 SD
- TAx4 FD
- "Instep"
- Auger + TA

• TALE Hybrid trigger

K.Fujita, 物理学会 2021/09

• TAx4 FD

M. Potts, ICRC2021

• The "Instep" feature

Pierre Auger found a spectrum softning in $10^{19} - 10^{19.5}$ eV range Combining TA SD, FD and HiRes data, we observe the *Instep* feature in the Northern Hemisphere at $10^{19.25\pm0.03}$ eV with a 5.3 σ significance

Parameter	arameter Auger	
γ_1	3.29 ± 0.02	3.23 ± 0.01
γ_2	2.51 ± 0.03	2.63 ± 0.02
γ3	3.05 ± 0.05	2.92 ± 0.06
γ_4	5.1 ± 0.3	5.0 ± 0.4
$E_{\text{ankle}}/\text{EeV}$	5.0 ± 0.1	5.4 ± 0.1
$E_{\rm instep}/{\rm EeV}$	13 ± 1	18 ± 1
$E_{\rm cut}/{\rm EeV}$	46 ± 3	71 ± 3

Y.Tsunesada, Auger+TA spectrum WG, ICRC2021 20

D. Ivanov, ICRC2021

• Auger + TA WG

TA ICRC2019 (E rescaled by -4.5%

- Absolute energy scale difference 9%
 - + energy-dependent shift of
 - ±10% per decade

Analysis : Anisotropy

Clustering

- Hot spot : E > 57 EeV
- slightly Lower Energy
- Dipole
- LSS
- Declination dependence

• Hot spot 12-yr

Energy E > 57 EeV

Overall post-trial significance has dropped from 3.4σ to 3.2σ

The growth rate of events inside the hotspot is consistent with the linear one within ~ 1σ

J.H. Kim, ICRC2021

Perseus-Pisces supercluster

Anisotropy

• Observed: 85 events

(11-year TA SD data)

-864 events with E $\geq 10^{19.4}$ eV

slightly Lower Energy

• Expected from isotropy: 49.5 events

J.H. Kim, ICR 2021

Anisotropy

90 E > 8.8 EeV G.P.60 0.08 0.06 Dipole 12-yr 30 0.04 0.02 R.A.0 (deg) 360 300 180 120 240-0.02 qual -0.04 × -0.06TA I2-yr result : $r_{\alpha} \simeq 3.1\%$; $\phi_{\alpha} \simeq 134^{\circ}$ S.G.P.-0.08Auger 2017 result : $r_{\alpha} \simeq 4.7\%$; $\phi_{\alpha} \simeq 100^{\circ}$ -60 -90 0.3 Sky map of residual intensity between χ^2 /ndf=13.3/10 TA (ICRC 2021) 0.2 TA data and an isotropic distribution for Auger (2017) E > 8.8 EeV (energy cut corresponds to 0.1 E > 8 EeV used by Auger). 0 -0.1-0.2 $\phi_{a} = 134 \pm 34$ $r_{\alpha} = 0.031 \pm 0.018$ T.Fujii, ICRC2021 -0.3350 300 250 150 200100 50 25 P.Tinyakov, ICRC2021

Residual intensity $(N_{obs}-N_{exp})/N_{exp}$

Right Ascension [degree]

Anisotropy

Declination dependence

Difference of the cutoff energies of energy spectra

 $log(E/eV) = 19.64 \pm 0.04$ for lower dec. band (-16° ~ 24.8°) $log(E/eV) = 19.84 \pm 0.02$ for higher dec. band (24.8° ~ 90°)

The global significance of the difference is estimated

Analysis : Composition

- TALE FD
- TA & TALE hybrid
- TA SD
- UHE photon

• TALE FD mono

T.AbuZayyad, ICRC2021

TA Collaboration ApJ 909 (2021)

• TA & TALE hybrid

TALE hybrid trigger

H.Shin, ICRC2021

K.Fujita, ICRC2021

Elongation plot : <X_{max}>

• TA SD

 Machine learning technique based on BDT and 16 composition-sensitive observables with 12 years of TA SD data

• UHE photon limits

New p - γ classifier based on neural network. Classifier uses full time-resolved signals from all triggered SD stations along with 16 composition-sensitive observables. (TA SD 11yrs)

E_0 , eV	10 ^{19.0}	10 ^{19.5}	$10^{20.0}$
γ candidates	2	1	0
num <u>n</u> <	6.72	5.14	3.09
A_{eff}	3428	5546	7875
flux F_{γ} <	2.0×10^{-3}	9.3×10^{-4}	3.9×10^{-4}

O. Kalashev, ICRC2021 I. Kharuk, ICRC2021

共同利用研究課題

研究费 旅费 計

			町万頃	小人	EI
F05	佐川宏行	宇宙線望遠鏡による極高エネルギー宇宙線の研究	0	855	855
C01	野中敏幸	TA実験サイトでの超高エネルギー宇宙線観測のための多チャ ンネル粒子弁別測定システムの開発	240	90	330
F06	有働慈治	TA実験サイトにおける大気透明度測定法の研究・開発	29	285	314
F07	木戸英治	TAx4実験地表検出器の安定稼働のための研究開発	0	0	0
F08	荻尾彰一	TALEハイブリッド実験による10の17乗eV領域宇宙線の研究	0	380	380
F09	冨田孝幸	ドローンに搭載された標準光源による大気蛍光望遠鏡の光学 系較正の評価	0	238	238
F10	山崎勝也	大気蛍光望遠鏡の自動観測を目指した夜間雲量測定用CCD カメラの開発と解析	143	190	333
F11	竹田成宏	TA-FD観測の完全遠隔制御にかかる観測サイトでの環境整備	96	208	304
F13	藤井俊博	TA実験サイトでの新型大気蛍光望遠鏡による極高エネルギー 宇宙線観測	0	238	238
F14	多米田裕一郎	次世代の超高エネルギー宇宙線観測のためのフレネルレンズ 型大気蛍光望遠鏡の開発研究	114	426	540
F15	奥田剛司	片側読み出しシンチレーション検出器による放射線入射位置 測定	440	100	540
11件 4,072千円 ご支援ありがとうございます。今後ともよろしくお願いいたします。				33	

TA実験サイトにおける大気透明度測定 法の研究・開発 (F06)

- 恒星光度の追尾測定による
 大気状態変化の測定
 - 2020/02 望遠鏡・赤道儀をユタ州に移送
 - CCDカメラ は国内

- BG3フィルター、Jhonson Uバンドフィルターの測定

BG3フィルター(市販) BG3フィルター(FD用)

TAx4実験地表検出器(SD)の 安定稼働のための研究開発 (F07)

- ヘリコプターで設置後、一部SDの光電子 増倍管から信号消失
 - ヘリコプターによる設置時の衝撃が原因?
 - 約10台のTAx4実験用のSDと、他TALE, TAの 不調SDを含めて合計約20台の回収、修理及び 再設置を2月に行う予定
- データ収集のための無線通信が不良/不 安定なSDの対策

特に南側のアレイで通信不良のSDが多い原因の調査

- 無線通信の信号強度強化のためのアンプ(+10 dB)の導入で一部改善。
- アレイの通信周波数の変更 → 効果なし
- 通信不良なSDについては、今後以下を予定
 - 更に強力なアンプ
 - 通信エラーを最小化するようにアンテナ再調整
 - 電波中継器を使って通信エラーの少ない方向を調査

大気蛍光望遠鏡の自動観測を目指した 夜間雲量測定用CCDカメラの開発と解析 (F10)

- ・FD視野方向の雲の有無を得るには仰角の低い領域の情報が欲しい
- 3.5等級までの星では空に隙間が多く、
 仰角の小さい領域で十分な星の数が得られない
- → 4.5等級までの星を判定に使用できるようにパラメータを調整した

2014/07/25 06:59 @CLF

2014/07/25 06:59 @CLF

M.Malacari et al. (FAST Collaboration), Astropart.Phys. 119 (2020) 102430

次世代の超高エネルギー宇宙線観測のための フレネルレンズ型大気蛍光望遠鏡の 開発研究 (F14)

CRAFFT実験

- •次世代の超高エネルギー宇宙線観測装置の開発
- ・ 光電子増倍管感度2次元不均一性の測定
- 受光面の光電子増倍管の配置の再検討
 - 空気シャワー再構成の決定精度の向上を目的に
 受光面のピクセルの様々な形状や配置を検討した

TAサイトに設置されたCRAFFT検出器

受光面のピクセルの形状や、配置を変えたときの到来方向決定精度

片側読み出しシンチレーション検出器による放射線入射位置測定 (F15)

«研究目的» シンチレータの片端に受光系をすべて配置する形でシンチレータの奥行き方向の放射線入 射位置を測定できる装置の開発及び性能実証試験。

«研究方法»波長変換ファイバー中の 光量減衰が短波長側でより大きくなる という波長依存性を利用する。右上図 はLEDを連続的に当てたときにファイ バー分光器で取得された波長変換 ファイバーの分光特性である。これを 元にTAのシンチ&ファイバーに左図の 様な二色鏡とMPPCを用いて実験を 構成した。

«研究状況» 右下図は20ns幅のパルスLEDを用いた短 波長側の平均信号比率である。ファイバー端からの距離 に応じて期待される特性を示すが、実際のミューオン信 号ではMPPCのノイズとはギリギリ異なると言える信号が やっと見える程度で厳しい状況。ファイバー端と二色鏡を もう少し工夫してみる予定。

共同利用研究課題

≡∔

研空费 協費

			町万良	派兵	HI
F05	佐川宏行	宇宙線望遠鏡による極高エネルギー宇宙線の研究	0	855	855
C01	野中敏幸	TA実験サイトでの超高エネルギー宇宙線観測のための多チャ ンネル粒子弁別測定システムの開発	240	90	330
F06	有働慈治	TA実験サイトにおける大気透明度測定法の研究・開発	29	285	314
F07	木戸英治	TAx4実験地表検出器の安定稼働のための研究開発	0	0	0
F08	荻尾彰一	TALEハイブリッド実験による10の17乗eV領域宇宙線の研究	0	380	380
F09	冨田孝幸	ドローンに搭載された標準光源による大気蛍光望遠鏡の光学 系較正の評価	0	238	238
F10	山崎勝也	大気蛍光望遠鏡の自動観測を目指した夜間雲量測定用CCD カメラの開発と解析	143	190	333
F11	竹田成宏	TA-FD観測の完全遠隔制御にかかる観測サイトでの環境整備	96	208	304
F13	藤井俊博	TA実験サイトでの新型大気蛍光望遠鏡による極高エネルギー 宇宙線観測	0	238	238
F14	多米田裕一郎	次世代の超高エネルギー宇宙線観測のためのフレネルレンズ 型大気蛍光望遠鏡の開発研究	114	426	540
F15	奥田剛司	片側読み出しシンチレーション検出器による放射線入射位置 測定	440	100	540
11件 4,072千円 ご支援ありがとうございます。今後ともよろしくお願いいたします。				40	

A.Iwasaki, 物理学会 2021/09

基盤(S) 2019~

「広エネルギー領域の精密測定による超高エネルギー宇宙線の源と伝播の統一的解釈」

2021/10/15 中間評価 A-

「新型コロナウイルス感染症の拡大によって、SD 検出器の製作及び設置を延期せざるを得ない 状況となっている」

TALE infill

TALE infilの進行状況

■ ステーキング、考古学的・生態学的環境アセスメント調査が完了

assembly of 50 SDs, 2021/10/17 ~ 11/05

TALE infill

Simulation study

検出効率、aperture

測定精度

toward post COVID19

• TALE infiill

- assembled 50 SDs
 will be shipped, deployed
- Scouting the site
 - 2021/11/08 ~11/25
 - checking of FD (BR,LR) equipments
 - maintainance of some SDs
- SD replacement
 - 2022/01/24 ~ 2/27
 - using helicopter

pedstal check LR FD

Observation

- TA SD and MD FD observation is continuing
 - BR, LR FD observation continue to be cancelled
- TALE SD and FD observation is continuing
- TAx4 SD and FD start stable operations
- Analysis
 - Spectrum
 - New feature in the energy spectrum at $\sim 10^{19.25} \text{ eV}$
 - Anisotropy
 - Hint of excess in the direction of Perseus Pisces at $\sim 10^{19.4} \text{ eV}$
 - Composition
 - Break at $10^{17.2}$ eV in elongation rate
- Operation
 - TALE infill detectors were assembled, will be shipped
 - BR, LR FD were inspected for observation after COVID-19
 - SD replacement will be performed