

共同利用研究概要 (2021)

□ 共同研究内容

● CALET観測最適化のためのシミュレーション計算及びデータ解析

- □ 発表概要
 - CALET概要
 - 観測現状
 - 観測データ解析
 - まとめと展望
- □予算: 旅費 190千円 ➡ 全額繰越予定
- □ 共同利用: 計算機(シミュレーション計算)

研究代表者	早稲田大学 鳥居祥二					
参加研究者及び研究補助						
早稲田大学	赤池陽水, 小林兼好, Motz H. Margin	芝浦工業大学	笠原克昌			
宇宙線研究所	寺澤敏夫,浅野勝晃	弘前大学	市村雅一			
神奈川大学	田村忠久,清水雄輝	信州大学	宗像一起			
立命館大学	森正樹	茨木高専	三宅晶子			
横浜国立大学	片寄祐作	大阪市立大学	常定芳基			
ルイジアナ州立大学 川久保裕太		NASA/GSFC	Nick Cannady			
INFN-Pisa	Pier S. Marrocchesi					

CALET Payload

- Mass: 612.8 kg
- JEM Standard Payload Size: 1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max)
- Telemetry: Medium 600 kbps (6.5GB/day) / Low 50 kbps

Observation by High Energy Trigger for 2,241 day : Oct.13, 2015 - Nov. 30, 2021 Over 6-year observation has been achieved !!

- \Box The exposure, SQT, has reached to ~200 m² sr day for electron observations by continuous and stable operations.
- □ Event number of HE triggered events (>10 GeV) is ~1.4 billion with a live time fraction of about 86 %. Total event number triggered over 1 GeV is ~3.2 billion.

Distribution of deposit energies (ΔE) in TASC

Main Science Goals and Status of the Analysis

Scientific Objectives	Observables	Energy Reach	Reported	Reference	ICRC2021
Cosmic-ray origin and acceleration	Electron spectrum	1 GeV – 20 TeV	to 4.8 TeV	PRL 120, 261102 (2018)	11 GeV – 4.8 TeV
	Proton spectrum	10 GeV – 1 PeV	to 10 TeV	PRL 122, 181102 (2019)	30 GeV – 60 TeV
	Helium spectrum	10 GeV – 1 PeV	preliminary	preliminary	50 GeV – 50 TeV
	Carbon and oxygen spectra	10 GeV – 1 PeV	to 2.2 TeV/n	PRL 125, 251102 (2020)	10 GeV/n – 2.2 TeV/n
	Iron spectrum	10 GeV – 1 PeV	to 2 TeV/n	PRL 125,241101 (2021)	10 GeV/n – 2 TeV/n
	Elemental spectra of primaries	10 GeV – 1 PeV	to 100 TeV	ICRC 2019, 034	10 GeV – 100 TeV
	Ultra-heavy abundances	> 600 MeV/n	> 600 MeV/n	ICRC 2019, 130	> 600 MeV/n
CR propagation	B/C and secondary-to-primary ratios	Up to some TeV/n	to 200 GeV/n	ICRC 2019, 034	16 GeV/n – 2.2 TeV/n
Nearby electron sources	Electron spectral shape	100 GeV – 20 TeV	to 4.8 TeV	ICRC 2019, 142	to 4.8 TeV
Dark matter	Signatures in e/γ spectra	100 GeV–20TeV (e) 10 GeV-10TeV (γ)	to 4.8 TeV (e) to 600 GeV (γ)	ICRC2019 , 533	to 4.8 TeV
Gamma rays	Diffuse & point sources	1 GeV – 10 TeV	1 GeV – 1 TeV	ApJS 238:5 (2018)	1 GeV – 1 TeV
Heliospheric physics	Solar modulation	1 GeV – 10 GeV	1 – 10 GeV	ICRC 2019, 1126	1 – 10 GeV
Gamma-ray transients	GW follow-up and GRB analysis	7 keV–20MeV (CGBM) 1 GeV-1TeV (ECAL)	7 KeV-20MeV	ApJL 829:L20 (2016)	7 keV–20MeV (CGBM) > 1 GeV (ECAL)
Space weather	Relativistic electron precipitation	> 1.5 MeV	> 1.5 MeV	Geophys.Res.Lett,43 (2016)	> 1.5 MeV

Main Science Goals and Status of the Analysis

Scientific Objectives		Observables	Energy Reach	Reported	Reference	ICRC2021
Cosmic-ray origin and acceleration	1	Electron spectrum	1 GeV – 20 TeV	to 4.8 TeV	PRL 120, 261102 (2018)	11 GeV – 4.8 TeV
	~	Proton spectrum	10 GeV – 1 PeV	to 10 TeV	PRL 122, 181102 (2019)	30 GeV – 60 TeV
	~	Helium spectrum	10 GeV – 1 PeV	preliminary	preliminary	50 GeV – 50 TeV
	~	Carbon and oxygen spectra	10 GeV – 1 PeV	to 2.2 TeV/n	PRL 125, 251102 (2020)	10 GeV/n – 2.2 TeV/n
	~	Iron spectrum	10 GeV – 1 PeV	to 2 TeV/n	PRL 125,241101 (2021)	10 GeV/n – 2 TeV/n
		Elemental spectra of primaries	10 GeV – 1 PeV	to 100 TeV	ICRC 2019, 034	10 GeV – 100 TeV
		Ultra-heavy abundances	> 600 MeV/n	> 600 MeV/n	ICRC 2019, 130	> 600 MeV/n
CR propagation	~	B/C and secondary-to-primary ratios	Up to some TeV/n	to 200 GeV/n	ICRC 2019, 034	16 GeV/n – 2.2 TeV/n
Nearby electron sources		Electron spectral shape	100 GeV – 20 TeV	to 4.8 TeV	ICRC 2019, 142	to 4.8 TeV
Dark matter		Signatures in e/γ spectra	100 GeV–20TeV (e) 10 GeV-10TeV (γ)	to 4.8 TeV (e) to 600 GeV (γ)	ICRC2019 , 533	to 4.8 TeV
Gamma rays	~	Diffuse & point sources	1 GeV – 10 TeV	1 GeV – 1 TeV	ApJS 238:5 (2018)	1 GeV – 1 TeV
Heliospheric physics	~	Solar modulation	1 GeV – 10 GeV	1 – 10 GeV	ICRC 2019, 1126	1 – 10 GeV
Gamma-ray transients	~	GW follow-up and GRB analysis	7 keV–20MeV (СGBM) 1 GeV-1TeV (ECAL)	7 KeV-20MeV	ApJL 829:L20 (2016)	7 keV–20MeV (CGBM) > 1 GeV (ECAL)
Space weather		Relativistic electron precipitation	> 1.5 MeV	> 1.5 MeV	Geophys.Res.Lett,43 (2016)	> 1.5 MeV

: report in this presentation

Proton Spectrum

12

Proton Spectrum

Proton Spectrum

Helium Spectrum

Carbon and Oxygen Spectra

PRL 125, 251102 (2020) PoS(ICRC2021) 93

Carbon and Oxygen Spectra

PRL 125, 251102 (2020) PoS(ICRC2021) 93

Iron Spectrum

The iron flux, above 50 GeV/n, is compatible within the errors with a single power law Analysis for the nickel spectrum is ongoing

Boron Spectrum and B/C ratio

PoS(ICRC2021) 112 PoS(ICRC2021) 604 PoS(ICRC2021) 1619

CGBM: dedicated Gammay-Ray Burst Monitor with energy range 7 keV-20 MeV

- Follow-up of LIGO/Virgo GW observations in:
 - X-ray and γ -ray bands
 - high-energy γ-in calorimeter
- DM limit

- **Limits on DM** annihilation into $\gamma\gamma$: $\langle \sigma v \rangle < 10^{-28}$ - 10^{-25} cm⁻³s⁻¹

- Limits on DM decay $\chi \rightarrow \gamma \nu$ etc.: $\tau_{\text{DM}} > 10^{30}$ s ($m_{\text{DM}} > 100$ GeV)

from 2015-10-05 to 2021-07-23 259 GRBs (44.9 GRBs / year) 228 Long (88%) 31 Short (12%)

Solar Modulation

PoS(ICRC2021) 1270

Summary

- CALET has been accumulating scientific data for over 6 years with excellent performance since October 13, 2015
- □ Linearity in the energy measurements established up to 10⁶ MIP and continuous on-orbit calibration updates
- □ Following results have been achieved by now
- Cosmic ray spectra
 - Electron and positron: 11 GeV 4.8 TeV
 - Proton: 30 GeV 60 TeV
 - Helium: 50 GeV 50 GeV
 - Carbon, oxygen and C/O ratio : 10 GeV/n 2.2 TeV/n
 - Iron: 10 GeV/n 2.0 TeV/n
 - Boron and B/C ratio: 10 GeV/n 2.2 TeV/n
 - Study on solar modulation over 5 years
 - Observation of diffuse and point sources (+Sun) of gamma-rays
 - Gamma-ray burst detections and follow-up observation of GW events
- CALET mission is planed by the end of 2024 by approval of JAXA/NASA/ASI