The Status of CTA and CTA-LST Project

Masahiro Teshima

Institute for Cosmic Ray Research, The University of Tokyo Max Planck Institute for Physics, Munich, Germany

Science of CTA is very wide SNRs, PWNe, AGNs, GRBs, Dark Matter

Cosmic Ray Origin

Super Massive Black Holes

Dark Matter Search (Discovery)

- Origin of Cosmic Rays (Big accelerators)
- Black Hole and S.M.B.H.
- Dark Matter Search

Extragalactic Sources

Active Galactic Nuclei

Gamma Ray Bursts

Galactic Sources

Super Nova Remnants

Roque de los Muchachos Observatory La Palma, Spain

Paranal, Chile

cherenkov telescope array Telescope Design

(cta

Telescope Types	SST	MST	LST	
Optics	Schwarzschild-Couder	Davies-Cotton	Parabolic (Isochronous)	
FoV and Camera	10.5 deg SiPM	7.5 deg PMT	4.3 deg PMT	
Mirror Diameter	4.3m	11.5m	23m	
Energy Range	3 TeV - 200 TeV	100GeV - 10TeV	20GeV – 2000GeV	
Science Targets	Galactic Sources PeVatron (UHE CR)	Galactic Sources Nearby AGNs (z<0.5) Dark Matter	Transient Sources AGNs(z<2), GRBs(z <4) Dark Matter	

Cost Book for Alpha Configuration 4 LSTs, 23 MSTs and 37 SSTs

CTAO Cost Book Executive Summary	Cash [M€]	IKC [M€]	Total cost [M€]
Company Polatod	Q 1	0.2	8 /
001 - Director's Office	2.4	-	2.4
002 - Administration	5.8	0.3	6.0
Construction Project	78.7	244.2	322.9
P01 - Project Management	2.4	-	2.4
P02 - Science & Science Ops. Preparation	2.3	6.3	8.6
P03 - Systems Engineering & Integration	3.2	0.1	3.3
P04 - On-Site Construction	53.4	16.3	69.6
Northern site	3.5	15.7	19.2
Southern site	49.9	0.6	50.5
P05 - Site/Infrastructure Design & Planning	2.1	3.6	5.7
P06 - Computing	13.1	39.4	52.5
P07 - Telescopes	1.6	171.6	173.3
Large-Sized Telescopes	-	60.1	60.1
Medium-Sized Telescopes	-	72.8	72.8
Small-Sized Telescopes	-	38.7	38.7
P08 - Array Common Elements	0.7	6.8	7.5

Grand Total

86.9 244.4 331.3

Table 2: CTAO Cost Book Executive Summary

cherenkov array Contributions to the construction costs of CTAO (MEur), from the last version of statutes, 5 Nov

Member/ Observer/		(Constructio	Pre- construction	Grand Total		
Strategic Partner/ Third Party	Materia Is and Services (M&S)	FTEs	Other (non- cash)	Direct cash	Total	Contribution to the gGmbH	Contribution to construction costs
Australia	1.340	0.108	0	0.450	1.898	0.219	2.117
Austria	1.695	0.080	0	0.600	2.375	0.625	3.000
Czech Republic	0.734	1.775	0	2.500	5.009	1.696	6.705
France	26.196	14.000	0	18.280	58.476	1.609	60.085
Germany	36.926	24.680	0	26.718	88.324	8.440	96.764
Italy	26.010	12.560	0	26.000	64.570	4.681	69.251
Japan	19.200	3.950	5.850	3.400	32.400	0.375	32.775
Poland	9.143	1.339	0	6.096	16.578	0	16.578
Slovenia	0.080	0.077	0	0.350	0.507	0.209	0.716
Spain	21.397	9.814	14.932	1.000	47.143	1.350	48.493
Switzerland	1.550	5.082	0	0.620	7.252	0.440	7.692
Total	144.271	73.465	20.782	86.014	324.532	19.644	344.176

17.4%
 28.1%
 20.1%

9.5%

14.1%

WBS_v4 (but still in progress)

CTA+: A proposal for enhancing CTA's performances (Telescopes, Science & Technologies)

Proposal CTA+ editorial board M. Cappi (Coord.), A. Antonelli, A. Comastri, G. Pare schi, G. Tagliaferri (INAF) R. Zanin (CTAO)N. Giglietto , G. Marsella, R. Paoletti (INFN)

PNRR Proposal High Energy Infrastructure CTA (ESFRI/ERIC) – CTA PC 24/01/22

CTA and LST Timeline

- 2016-2018 LST1 was constructed
- 2018-2021 LST1 in commissioning phase
- 2022-2024 LST2-4 will be constructed, and we need to take care operation and maintenance of LSTs
 LST1 can be defined in <u>Science-Engineering Phase</u> after commissioning
- 2022 CTAO ERIC will be founded
- 2026-2027 The final Acceptance of LST1-LST4 and IKC process
- 2023-2025 LST5-8 construction?

	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Organization	CTAO gGmbH (Heidelberg)										
Organization		CTAO ERIC (European Research Infrastructure Consortium)									
Alpha Config	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
I ST North	Comissioning and Operation of LST1										
LOT NORTH	СІ	DR	Deplo	oyment of LS	ST2-4	Operation as 4 LST Array					
MST North	Design an	nd Finance	INFRA Construction of 9MSTs					Observatory	Operation		
CTA South	Array conf	ig, Finance	INE	ΞDΛ	С	onstruction	and Deplyme	ent of 14 MS	Ts		
	and	CDR		Construction and Deployment of 37 SSTs							
Extension	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
LST South		Financ	/ CDR Construction of 4 LS			6Ts ???	Operation ???				

10 times better sensitivity Wide Energy coverage 20GeV~200TeV

- CTA array has a 10 times better sensitivity than HESS, MAGIC, and VERITAS
- CTA covers wide energy range from 20GeV to 200TeV (4 orders of magnitude)

LSTs will offer

- Distant AGNs up to z = 2 and GRBs up to z = 4 are observable with LSTs
- X10000 sensitivity for GRBs and AGN flares than Fermi
- The fast rotation (20 sec) offers the observation of GRBs even in prompt phase

telescope array

Simulated AGN Flares Template: the 2006 flare of PKS2155-304 Low Threshold Energy → High Precision Light curve

□ Light curve can be examined, a few minutes scale structure → a few 10s of seconds
 □ Particle acceleration mechanism, Cooling process

□ Light curve vs. Energy dependence → Q.G. Energy scale > Planck Mass scale

GRB: Simulated light curve (template: GRB080916C)

Complementarity of different approaches Direct, Indirect, and Collider Experiment

- Dwarf Sph. Galaxies
- CTA has the best sensitivity above 700GeV

Dark Matter Search Sensitive M_y: 200GeV - 10TeV

around 1/10 -1/20 M $\chi \rightarrow$ 20GeV-1TeV gamma

Commissioning of LST1 scientific observations

cherenkov telescope

array

cta

LST1 construction and Inauguration (Oct.2018)

therenkov telescope array LST1 commissioning 500hrs of Scientific Observation

Last two years we suffered very much from Nature Our status: **Oh, my God!!**

328 Breña Alta

• Volcano Eruption (19.Sep-14.Dec)

Erupciones históricas en La Palma						
#	Erupción	Año	Dias erupción			
1	nombre?	2021	85?			
2	Teneguía	1971	24			
3	San Juan	1949	47			
4	Charco	1712	56			
5	San Antonio	1667/1678	66			
6	Tigalate	1646	82			
7	Tehuya	1585	84			
8	Tacande	1430/1440	?			

We are very sorry for the local people who evacuated from their living places and lost heir properties. Fortunately the ORM is located 20km from the volcano, so far there is no damage to MAGIC and CTA LST.

Volcano Eruption, from time to time, ash fell at LST Site

cherenkov telescope array

We could not find any major damages last weeks

devices in dish center protected

Crab Nebula and Pulsar

Crab LST-MAGIC joint analysis by Yoshiki Ohotani

Crab Pulsar by Dr. R.L.Coto

AGN observation with LST1 during 2020-2021Q1

Nearby AGNs, Mrk501, Mrk421, 1ES 1959+650, BL Lac
 Distant AGNs, 1ES0647+250, PG1552+112

Distant AGNs, 1ES0647+250, PG1553+113

RA

Cta Cherenkov Balactic Center with MAGIC+LST1 stereo by Yoshiki Ohtani

- The joint observations were performed not only the Crab Nebula, <u>but also other interesting</u> sources such as Galactic Center
- The Galactic Center is not only <u>scientifically interesting region</u>, containing SMBH SgrA*, SNRs, DM, etc., but <u>also a stable source in VHE region</u>, which could be used for calibration
- The application of the combined analysis pipeline to the data shows that <u>the Galactic Center has</u> been clearly detected with 15.6σ in 10.3 hours observation time

BL Lac Flare observed with LST1 by Dr. Seiya Nozaki

SED measured down to 20GeV

MAGIC Highlight, Gamma Ray Burst GRB190114C (z=0.42)

Historical achievement

- First Detection of the GRB from ground.
- ~100 Crab flux in the first minutes.
- TeV bump has a similar energetics with KeV-GeV bump

MAGIC Highlights Other GRB observations with MAGIC

GRB 160821B

Short GRB under moon E > 600GeV Z = 0.162 3.1 σ (PostTrial) Published in APJ 2021

GRB 201015A

Long GRB in Dark

Z = 0.426 3.5 σ (PostTrial) Published, ICRC 2021_797 Y. Suda et al.

GRB 201216C

Long GRB in Dark

Z = 1.10 6 σ (PostTrial) Published, ICRC 2021_788 S. Fukami et al.

Multi Messenger Astronomy IC170922A / TXS 0506+056

CTA North Phase I Installation Plan LST1-4 location

Multi-messenger and Multi-wavelength Astrophysics cherenkov telescope

ASTRO-PARTICLE PHYSICS

Cosmic Ray Physics

High Energy Astrophysics

Wave **AstroPhysics**

array

ASTRO-PHYSICS Gamma Ray Bursts, Black holes,

Neutron Stars, Space and Time

PARTICLE PHYSICS

Dark Matter, Neutrino

IceCub

Particle Physics

IceCube Array 86 strings including 8 DeepCore strings 5160 optical sensors

DeepCore 8 strings-spacing optimized for lower energies

IceTop 81 Stations 324 optical sensors

Amanda II Array (precursor to IceCube

Eiffel Tow 324 m

- CTA is a big and ambitious project and plays an important role in the MM and MWL astronomy in the next decades
- CTA South construction will start in 2023
- CTA North construction, LST2-4 and MST start in summer 2022 and completed in 2024
- LST5-8 construction in South is on Discussion to enhance the performance of CTA Observatory
- CTA-Japan should also contribute.
- LST1 commissioning → <u>Science and Engineering operation</u>
- We confirmed LST1 satisfies the design performance
- <u>GRBs with the redshift up to z = 4 can be seen with LST</u>
- ~10 sources are detected with LST1. Some results, Crab Pulsar, BL Lac flare, G.C., RS Oph are very interesting

Breaking News !! Merger of giant black holes predicted

Science 1 Feb 2022, Astro-ph 2201.11633 (N.Jiang et al)

Tick ··· tick ··· boom?

Figure 1: The optical, UV and X-ray light curves of SDSSJ1430+2303. The ZTF g and r band photometric data are shown in blue and red solid circles, with error bars in grey. The black solid diamonds and magenta solid circles represent the XRT count rate in 0.3-10 keV and UVW1 magnitudes from our Swift monitoring, respectively. We have zoomed in the Swift data (the region encircled by dashed box) in the inset for clarity.

SDSS J1430+2303 z = 0.081

Credit: NASA

Close supermassive black hole binaries with the separation below parsec??

Thank you very much

