

Large zenith angle observations with IACTs: MAGIC detection of Crab Nebula up to 100 TeV and prospects for CTA

Ie. Vovk ICRR, The University of Tokyo

The extreme Universe viewed in very-high-energy gamma rays 2021 21.02.2022, online

IACTs and VHE shower detection technique

Atmosphere as a detector medium

Imaging Atmospheric Cherenkov Telescopes (IACTs)

- detect: Cherenkov light from secondaries
- location: below the shower
- observations: pointing
- collection area: light pool size

Lower energy threshold Better angular resolution Surface arrays

- detect: secondaries
- location: submerged into the shower
- observations: all-sky
- collection area: array area

Larger collection area / exposure

Can IACTs get this?

Challenge of IACT >100 TeV observations

• boost A_{eff} with more telescopes (e.g. CTA SSTs)

This talk

IACT collection area

Collection area of the IACTs is determined by the cherenkov light pool size

Iniversity of Tokyo Vertical observations Large zenith angle observations (typical observational (proposed setup) mode of IACTs) Zenith Zenith d d ~ 10 km d r ~ 120 m ZA d ~ 100 km r ~ 1200 m $d \sim 10 \text{ km}/\text{cos}(\text{ZA})$ $ZA > 70^{\circ}$ Usually $ZA \sim [0^{\circ}; 60^{\circ}]$ and shower shower distance d > 50 km distance d ~ 10-20 km

Larger zenith angle observations

Larger zenith angle observations

Originally proposed by Konopelko+ '99

Observations up to ZA~60° already employed for specific sources (e.g. Ahnen+ 2017). Yield a boost in A_{eff} at high energy end.

Cosmic ray EAS development at large zenith angles

Neronov+ '16

Electrons in EAS cool over ~0.1-1 km path. Muons require ~20-500 km to loose their energy.

High zenith angle observation may enable measurements of muon "tail" also with IACTs.

Formation of the muon "tail"

Neronov+ '16

At high ZA muon light density is small. Why can we see them?

Though single muons (rings) are too dim, large number of muons form the tail.

Imaging and timing of CR EAS

Neronov+ '16

Another profound difference of the high-ZA showers is their longitudinal (temporal) evolution (Neronov+ '16)

Impact parameter (@ ZA=70°)

Towards the composition measurement with LZA data

Neronov+ '16

 $N_{_{\mu}}$ and $N_{_{e}}$ can be estimated from data using the extended (leading) and core (delayed) emission

Added complexity of LZA observations

Mirzoyan+ '20

- Larger light absorption: higher energy threshold.
- Smaller shower images: degradation of parameter reconstruction.
- Longer lasting showers: possible issues when recording data.

Smaller image size

Longer lasting showers from larger impact distances

IACTs capable of LZA observations

Cherenkov Telescope Array project

The largest Cherenkov observatory every built

~1500 scientists and engineers ~200 institutes 31 countries

Southern site (Chile)

Large international effort

Northern site (Canary Islands)

Layout: 4 large-sized telescopes 25 medium-sized telescopes 70 small-sized telescopes Layout: 4 large-sized telescopes 15 medium-sized telescopes

Extremely rich scientific outcome is expected

MAGIC telescope system

Aleksic+ '16 MAGIC Collaboration '20

Image: Max Planck Institute for Physics/R. Wagner

Stereoscopic system of 2 IACTs, located at La Palma, Spain

Telescopes:two D=17mSite:La Palma (Canary Islands)Energy range:15 GeV – above 50 TeVResolution:0.07°-0.14° (0.1-1 TeV)Sensitivity:0.6% Crab units (integral)Field of view:3.5 deg

Performed LZA observations of Crab Nebula up to 100 TeV (MAGIC Collaboration '20)

Crab Nebula: a (the?) pulsar wind nebula

Nearby (d ~ 2 kpc), young (age ~ 1ky), powerful (L_{sd} ~5x10³⁸ ergs/s), magnetized (B~100 µG)

Multiple electron populations argued (Atoyan & Aharonian '96). Contribution of hadronic emission in HE band is unclear. VHE emission is extended (H.E.S.S. Collaboration '20) PeV photons detected (LHASSO Collaboration '21)

VHE emission – solution to (some of) the puzzle(s)

GeV-TeV emission is produced by several competing mechanisms. Multiple electron populations ("radio", "wind", possibly "flare").

>10 TeV energies some of the mechanisms are sub-dominant

In particular, above 30 TeV IC on CMB may be dominant.

B-field constraints
Links to GeV flares
SSC contribution constraints

SSC depends on (1) electron spectrum, (2) B-field and (3) emission region size.

Hadronic contribution in >10 TeV range? (Atoyan & Aharonian '96, Bednarek & Protheroe '97, Amato+ '03)

Crab Nebula variability

>10x flux variability @ E < 1 GeV!

100 MeV synchrotron emission corresponds to ~100 TeV IC.

Counterparts for Fermi flares are expected in the 100 TeV band, though the strong corresponding B-field (> 1 mG, Buehler & Blandford '14) would suppress the IC emission.

Detection of the ~100 TeV emission with current generation of ground based IACTs is demanding

MAGIC LZA detection of Crab Nebula at highest energies

MAGIC Collaboration '20

First LZA observations in the range ZA=70-80°

Addressing the associated systematics: atmosphere transmission, defocused imaging, small image size

Reconstructed collection area

 A_{eff} @100 TeV is comparable to CTA predictions (at 20° zenith angle).

http://www.cta-observatory.org/science/cta-performance/ (version prod3b-v1)

Reconstructed SED

- larger E_{max} : 30 TeV \rightarrow 100 TeV (compared to Aleksic+ '15)
- 8x shorter observation time compared to earlier HEGRA measurements (Aharonian+ '04)

"Pathfinder" for future CTA observations

Constraining the hadronic contribution

MAGIC Collaboration '20

Accelerated electrons ≡ accelerated protons (likely)

Nuclei can be (1) ripped from the pulsar surface, (2) accelerated on shock wave(s) resulting from the wind or (3) accelerated during the magnetic re-connection events.

Interactions may be ~10 fold intensified in the nebula filaments.

Tested models from Bednarek & Protheroe (1997) and Amato+ (2003)

→ No obvious contribution from hadronic component.

LHASSO measurements should be even more constraining.

Demonstration of the LZA observations potential in extending the IACT energy range.

LZA observations with CTA

Neronov+ '16

CTA LZA observations: large FoV and sensitivity in multi-PeV range

- A_{eff} gain at ZA > 80 deg
- Large FoV cameras can grasp both muon "halo" and electron "core" Cherenkov light
- Many individual telescopes (CTA SSTs)
- $A_{eff} \sim 10^4 \text{ km}^2$ (@ 87 deg)
- Large "grasp" g= $A_{eff} \Omega$

Shower images as may be seen by CTA SSTs (0.5 PeV photon and 1 PeV hydrogen / iron)

LZA observations with CTA

Neronov+ '16

CTA LZA observations: large FoV and sensitivity in multi-PeV range

- A_{eff} gain at ZA > 80 deg
- Large FoV cameras can grasp both muon "halo" and electron "core" Cherenkov light
- Many individual telescopes (CTA SSTs)

• CR composition measurements

- Background-free observations for E > 0.1-1 PeV
- Unprecedented sensitivity to the diffuse (extra)galactic gamma-ray emission

Potentially unique opportunity for multi-PeV gamma-ray and CR studies

Large zenith angle observations – a promising, novel way to perform >100 TeV observations with IACTs.

Such observations may require specific hardware features (small pixels, longer read-out, auxiliary atmosphere monitoring), achievable with current and future IACT systems.

First LZA Crab Nebula observations with MAGIC present demonstrate a potential of LZA approach in boosting the collection area at highest energies.

Future CTA LZA observations may open a new window of multi-PeV gamma-ray and CR measurements.