Multi-messenger astrophysics of neutron star binary mergers

Kyohei Kawaguchi (U. Tokyo, ICRR)

Collaborators: S. Fujibayashi (AEI), K. Hotokezaka (U. Tokyo), M. Shibata (AEI, Kyoto. U.), M. Tanaka (Tohoku U.), and S. Wanajo (AEI)

The extreme Universe viewed in very-high-energy gamma rays 2021

Outline

- · Brief overview: neutron star binary mergers
- Previous Observations and Multi-messenger astrophysics
- Expectation of Future Observations
- · (Our recent study)

Brief picture

Inspiral Gravitational waves from **NS-mergers**

amplitude: (distance, inclination):

Gravitational wave detectors

Advanced LIGO

https://www.ligo.caltech.edu/

- · GW sources for ground-based GW detectors
 - Compact binary mergers
 - · Core collapse Super Novae
 - Rotating Neutron stars
 - · Primordial GW (Inflation)
 - · Cosmic Strings

大型低温重力波望遠鏡

Electromagnetic Counterparts to NS binary mergers

- Various transient EM counterparts that associate NS binary mergers:
 - short-hard gamma-ray-burst
 - Afterglow
 - cocoon emission
 - kilonovae/macronovae
 - radio flare, etc.
- Host galaxy identification, remnant properties, environment
- Possible main synthesis site of r-process nuclei in the universe

Observed GW events

- LIGO-Virgo: observation
 (FAR<0.25 yr⁻¹):
- BBH (BH-BH): 63
- · BNS (NS-NS): 2
 - · GW170817, GW190425
- NSBH: 1(3)
 - · (GW200105), GW200115
 (GW190814 → BBH?)

GW170817: GW+EM detection from a NS-NS (BNS) merger

Ref: LIGO/Virgo 2017

GW170817:Constraints on binary parameters

Tidal deformability

Masses of the binary components

NS mass - radius relation

1 40		
1.35	TaylorF2 PhenomDNRT PhenomPNRT CECONNET	
	SEODING	S
$\left\ {{\mathbb{N}}\atop{\mathbb{R}}} \right\ _{{\mathbb{R}}^{1,20}} = \eta$		
1.15	Mchirp	
1.10	15 16 17 1	8
1.7	$m_1 (M_{\odot})$	0

Ref: LIGO/V	irgo 2017,2018
-------------	----------------

$$M_{\text{tot}} = \eta^{-3/5} \mathcal{M}_{\text{chirp}}$$

$$\geq 2.3 \mathcal{M}_{\text{chirp}} \approx 2.72 \, M_{\odot}$$

$$(0 \leq \eta \leq 1/4)$$

	Low-spin prior ($\chi \leq 0.05$)	High-spin prior ($\chi \leq 0.89$)
Binary inclination $\theta_{\rm JN}$	$146^{+25}_{-27} \deg$	$152^{+21}_{-27} \deg$
Binary inclination $\theta_{\rm JN}$ using EM distance constraint [104]	$151^{+15}_{-11} \deg$	$153^{+15}_{-11} \deg$
Detector frame chirp mass \mathcal{M}^{det}	$1.1975^{+0.0001}_{-0.0001}{ m M}_{\odot}$	$1.1976^{+0.0004}_{-0.0002} { m M}_{\odot}$
Chirp mass \mathcal{M}	$1.186^{+0.001}_{-0.001}{ m M}_{\odot}$	$1.186^{+0.001}_{-0.001} { m M}_{\odot}$
Primary mass m_1	$(1.36, 1.60) M_{\odot}$	$(1.36, 1.89) \ M_{\odot}$
Secondary mass m_2	$(1.16, 1.36) \ M_{\odot}$	$(1.00, 1.36) \ M_{\odot}$
Total mass m	$2.73^{+0.04}_{-0.01}{ m M}_{\odot}$	$2.77^{+0.22}_{-0.05} { m M}_{\odot}$
Mass ratio q	(0.73, 1.00)	(0.53, 1.00)
Effective spin $\chi_{\rm eff}$	$0.00\substack{+0.02\\-0.01}$	$0.02\substack{+0.08\\-0.02}$
Primary dimensionless spin χ_1	(0.00, 0.04)	(0.00, 0.50)
Secondary dimensionless spin χ_2	(0.00, 0.04)	(0.00, 0.61)
Tidal deformability $\tilde{\Lambda}$ with flat prior	300^{+500}_{-190} (symmetric)/ 300^{+420}_{-230} (HPD)	(0, 630)

Off-axis GRB+Afterglow observation

Prompt Emission LIGO/Virgo/Fermi/INTEGRAL 2017

Mooley et al. 2018

Radio observation (VLBI)

Simultaneous detection of Gamma ray burst:

Prompt emission: ~1.7 s after the GW trigger

Duration ~2 s E_{peak} ~200 keV

 $Ei_{so} \sim 10^{47} \text{ erg}$

Afterglow emission in radio - optical - X ray bands:

consistent with an off-axis jet model

Radio observation with VLBI:

Superluminal motion of the spot β_{app} ~4.1±0.4 \rightarrow existence of relativistic components

AT2017gfo: Kilonova

Optical & Near Infrared transient:

Consistent with a Kilonova emission with multiple ejecta components

(see e.g., Kasliwal et al. 2017, Cowperthwaite et al. 2017, Kasen et al. 2017, Villar et al. 2017, KK et al. 2018, 2019)

Identification of Host Galaxy: (NGC4993: ~40 Mpc)

Probable identification of Srll line: (Watson et al. 2019, Domoto et al. 2021)

Watson et al. 2019

Physics with GW+EM MMA

Lower limit for the NS tidal deformability (e.g., Radice & Dai 2018, Kiuchi et al. 2019)

Constraint on GW propagation speed

$$-3 \times 10^{-15} \le \frac{\Delta v}{v_{\rm EM}} \le +7 \times 10^{-16}$$

$$\Delta v = v_{\rm GW} - v_{\rm EM}$$

Ref: LIGO/Virgo/Fermi/INTEGRAL 2017

Upper limit on the NS maximum mass (e.g., Margalit & Metzger 2017, Rezzolla et al. 2018, Shibata et al. 2019)

3.5 years from the merger: X-ray Excess

Balasubramanian et al. 2021, Troja et al. 2021, Hajela et al 2021

X-ray excess from the off-axis jet afterglow model: Chandra: ~1234 days after the merger No excess in found radio band: VLA: 3 GHz (non detection in 15 GHz)

Possible scenarios:

 Arise of the synchrotron emission due to the interaction of (sub~mildlyrelativistic) kilonova ejecta and ISM (Hotokezaka et al. 2018)

X-ray emission due to fall-back disk
(Ishizaki et al. 2021, Metzger & Fernandez 2021)

O3: no GW+EM detections

NS mergers during O3

GW190425: the second NS-NS GW event (Abbot et al. 2020)

Implication from EM follow-up (e.g., Andreoni et al. 2019, KK et al. 2020 Gomez et al 2020, Ackley et al. 2020 M.Coughlin 2019, 2020, …)

<u>GW190521:</u> BH-BH with potential EM counterparts?

Future observation

Expected Detection rate, Localization, & Distance @ 04,05

	O4			O5		
	Total	$20 < \Omega_{90\%} \le 100$	$\Omega_{90\%} \le 20$	Total	$20 < \Omega_{90\%} \le 100$	$\Omega_{90\%} \le 20$
NS–NS	34^{+78}_{-25}	$2.5^{+5.7}_{-1.8}$	$2.4^{+5.6}_{-1.8}$	190^{+410}_{-130}	22^{+49}_{-15}	$13^{+29}_{-9.1}$
NS-BH	72^{+75}_{-38}	$6.8^{+7.1}_{-4.0}$	$4.3^{+4.5}_{-2.5}$	360^{+360}_{-180}	45_{-23}^{+45}	23^{+23}_{-12}
BH–BH	106^{+65}_{-42}	$19^{+12}_{-7.7}$	$15^{+9.3}_{-6.0}$	480^{+280}_{-180}	104_{-39}^{+61}	70^{+41}_{-26}

I. Andreoni et al. 2021

GW-GRB Joint events

Saleem et al. 2020, Howell et al. 2019

	Case	Any <i>ι</i>	$\iota \le 20^{\circ}$	$\iota > 20^{\circ}$
	LHV			
	Untriggered BNS	$5.7^{+13.7}_{-4.8}$	$1.1^{+2.6}_{-0.9}$	$4.6^{+11.1}_{-3.9}$
03	Total BNS	$6.5^{+15.9}_{-5.6}$	$1.7^{+4.1}_{-1.5}$	$4.8^{+11.8}_{-4.1}$
	Joint BNS-SGRB	$2.2^{+5.5}_{-1.9}$	$1.3^{+3.2}_{-1.1}$	$0.9^{+2.3}_{-0.8}$
	LHVK			
~04	Untriggered BNS	$23.5^{+57.3}_{-20.1}$	$4.3^{+10.5}_{-3.7}$	$19.2^{+46.7}_{-16.4}$
-05	Total BNS	$26.7^{+64.8}_{-22.8}$	$6.8^{+16.4}_{-5.8}$	$19.9^{+48.4}_{-17.0}$
-05	Joint BNS-SGRB	$8.1^{+19.6}_{-6.9}$	$5.1^{+12.3}_{-4.3}$	$3.0^{+7.3}_{-2.6}$
	LHVKI			
Dooian	Untriggered BNS	$164.8^{+400.6}_{-140.7}$	$31.0^{+75.4}_{-26.5}$	$133.8^{+325.3}_{-114.2}$
Design	Total BNS	$178.4^{+433.4}_{-152.2}$	$44.1^{+107.1}_{-37.6}$	$134.3^{+326.3}_{-114.6}$
~05-	Joint BNS-SGRB	$34.6^{+84.3}_{-29.6}$	$30.3^{+73.7}_{-25.9}$	$4.3^{+10.6}_{-3.7}$

Untriggered: Events detectable only by GW

Total BNS: Events with both GW and GRB triggered

Joint BNS-GRB:

BNS Event which both GW & GRB is detectable

f_{GBM}> 2 x 10⁻⁷ erg /cm⁻² (including off-axis events)

LVK collaboration Fermi <u>GRB-triggered</u> GW search Abbot et al. 2021, arXiv: 2111.03608

 $R_{\rm GW-GRB}^{\rm O4} = 1.04^{+0.26}_{-0.27} \ {\rm yr}^{-1}$

(Expected rate for O3 was 0.07-1.8 Event/yr @ O2 era)

VHE photon from BNS mergers

Saleem et al. 2020

VHE (GeV-TeV) photons from GRB

VHE (GeV-TeV) photons are detected for long GRBs (MAGIC: Acciari et al. 2019, H.E.S.S.: Abdalla et al. 2019, 2020)

Evidence of VHE (GeV-TeV) photons from a short GRB

GRB160821B (MAGIC: Acciari et al. 2021)

Patricelli et al., CTA Consortium ICRC2021 (see e.g., Veres & Mezaros et al. 2014, Murase et al. 2018, Kimura et al. 2019 for the mechanisms)

VHE follow-up of GW event by CTA

Distance: up to 500 Mpc. Delay time : 10 min. L_X~L_{VHE}

On axis (<10 deg.) ~92% by a few hours of exporsure

Off axis (<45 deg.) ~54% by a few hours of exporsure

Size of the localization area will be the key point for the follow-up

Kilonova follow-up

Target of Opportunity follow-up by Vera Rubin (2024+) during 05:

10 BNS: ~7 (Ω_{90%}<20 [deg²])

~3 (20< $\Omega_{90\%}$ <100 [deg²])

15 BHNS: ~12 (Ω_{90%}<20 [deg²]) ~3 (20<Ω_{90%}<100 [deg²])

Radio jet afterglow follow-up

GW detectors

Epoch	Facilities	Timeline	Range ^a	Localisation ^b	Rate ^c
			(Mpc)	(deg^2)	(yr^{-1})
04	HLVK	2022-23	190 ^d	35	10
05	$H_+L_+V_+K$	2025-26	330 ^d	35	50
2G	$H_{+}L_{+}V_{+}KI_{+}$	2026	330	35	50
Voy.	$H_V L_V V_V$	2030	1100	70	1800
3G	ET, CE, Voy	2040	5×10^4	10	10 ⁸
	ET, 2CE		5×10^{4}	1	10 ⁸

Radio observation

Table 3. Capabilities of unbiased searches for radio afterglows for a range of telescopes and observing strategies, including observing frequency (ν), bandwidth ($\Delta \nu$), total areal coverage (Ω_{total}) and required observing time (T_{total})

Telescope	ν	Strategy	$\Omega_{\rm total}$	S _{detect}	T _{total}
		(GHz)	(deg^2)	(μJy)	(hr)
Apertif	1.4	deep	10	125	12
		wide	40	250	12
ASKAP	0.9	deep	30	175	10
		wide	300	550	10
DSA	1.35	deep	10	5	1
		wide	100	5	2.5
MeerKAT	1.4	wide	10	35	12
ngVLA	2.4	wide	10	5	10
		ultra-wide	100	25	10
SKA-1	1.43	wide	10	10	10
		ultra-wide	100	40	10
SKA-2	1.43	wide	10	1	10
		ultra-wide	100	4	10
VLA	1.5	wide	5	75	12

Dobie et al. 2021

Question: Can we tell about the fate of the merger remnant from the observation?

Long-lived strongly magnetized remnant MNS

e.g. Shibata et al. 2017, Metzger et al. 2018

Rotational kinetic energy of MNS: $E_{
m rot} \sim 10^{52} \, {
m erg}$

Our recent study: Long-term simulation for a NS merger with a strongly magnetized long-lived MNS

Model : 1.35 M_{sun} + 1.35 M_{sun} (DD2 EOS) 3D GRRHD BNS merger simulation

> 3D ~100ms

> > E 12

Log *P* (g/c 9 & 01

100

8/kB 10

= 0.00 s

-500

-1000

Shibata et al. 2021, KK et al. in prep.

k_BT (MeV)

0.4

0.3

0.2

1000

500

Radiative transfer simulation synchrotron emission calculation

 $k_{\rm B}T\,({
m MeV})$

0.5 0.4

0.2

0.1

1000

500

0

x (km)

^{0.3} ്

Log ρ (g/cm³) 9 8 0 12

100

-1000

[¶]/₂ 10

t = 2.00 s

-500

0

x (km)

Extract ejecta component

GR-HD simulation for the longterm ejecta evolution (~0.1 d)

Kilonova emission

Kilonova Lightcurves (polar view. data: AT2017gfo)

Model : 1.35 M_{sun} + 1.35 M_{sun} (DD2 EOS) KK et al. in prep.

 $\alpha = 0.04$

Synchrotron flare from the ejecta fast tail

KK et al. in prep. (see also Hotokezaka & Piran et al. 2015)

70a,b < 75a,b < 80 Significant MHD (large dynamo) effect X-ray band (1 keV, 200 Mpc)

Radio band (3 GHz, 200 Mpc)

Summary

- GW170817 have been providing very interesting astrophysical information even 3.5 years after the onset of the merger.
- Though it was not found in O3, GW+EM detections of NS mergers are promising at least in O5 era.
- Multiple GRB-GW joint observations are expected to be achieved particularly in O5 era. VHE photons might be observed from such events even after ~10⁴ s after the GW/GRB trigger.
- A long-lived remnant with strong global magnetic field would be a source of bright EM counterparts. The Xray/radio-band follow-up observation will be an important tools for such an observation in the future.