Axion in antiferromagnetic insulators

Koji Ishiwata

Kanazawa University

Based on PRD 104, no.1, 016004

Chiba, March 7, 2022

1. Introduction

Axion in condensed matter physics

A hot topic and relates to

- Topological insulator
- Magnetoelectric effect
- Ferromagnetism / Antiferromagnetism
- It may be used in *particle* axion detection

Proposals to detect axion/axion-like particles (ALPs)

Marsh et al. '19

Chigusa et al. '21

Topological magnetic insulators are used

Dynamical axion is predicted in topological magnetic insulators

Dynamical axion field in topological magnetic insulators

Rundong Li¹, Jing Wang^{1,2}, Xiao-Liang Qi¹ and Shou-Cheng Zhang¹*

Today, I would like to address

- What is topological insulator?
- How does antiferromagnetism play a role?
- How is axion in insulators described?

Plan to talk

1. Introduction

- 2. Brief review of condensed matter physics (related to axion)
- 3. Axion in antiferromagnetic topological insulators
- 4. Conclusions

2. Brief review of condensed matter physics (related to axion)

Topics related to axion in condensed matter physics

- a). Insulators
- b). Quantum Hall effect
- c). Topological insulators

Minimum basics

 E_k : energy of electron

k : wavenumber of electron

Minimum basics

b). Quantum Hall effect

Quantum Hall (QH) effect

e.g., 2D insulator

b). Quantum Hall effect

Quantum Hall (QH) effect

e.g., 2D insulator

Quantized electric current is induced in x direction

"(Integer) QH effect"

The band structure

Normal insulator

QH insulator

<u>c). Topological insulators</u>

Topological insulators (TIs)

Idea: combination of two QH insulators

Kane, Mele '05

j

c). Topological insulators

Topological inselators (TIs)

Idea: combination of two QH insulators

Kane, Mele '05

j

c). Topological insulators

Topological insulators (TIs)

Idea: combination of two QH insulators

Kane, Mele '05

j

Such a system can be realized due to SOC (without magnetic field)

SOC: spin orbit coupling

The band structure

The same as QH insulators

3. Axion in antiferromagnetic topological insulators

H. Zhang et al. '09

Let's consider 3D TI, Bi_2Se_3

Cristal structure

Energy levels

H. Zhang et al. '09

Let's consider 3D TI, Bi_2Se_3

Band inversion due to strong SOC

$$H_0(\boldsymbol{k}) = \epsilon_0 \mathbf{1}_{4 \times 4} + \sum_{a=1}^5 d^a \Gamma^a$$

 $(d^{1}, d^{2}, d^{3}, d^{4}, d^{5}) = (A_{2} \sin k_{x}, A_{2} \sin k_{y}, A_{1} \sin k_{z}, \mathcal{M}(\mathbf{k}), 0)$ $\mathcal{M}(\mathbf{k}) = M - 2B_{1} - 4B_{2} + 2B_{1} \cos k_{z} + 2B_{2}(\cos k_{x} + \cos k_{y})$ $\Gamma^{1} = \begin{pmatrix} 0 & \sigma^{x} \\ \sigma^{x} & 0 \end{pmatrix} \qquad \Gamma^{2} = \begin{pmatrix} 0 & \sigma^{y} \\ \sigma^{y} & 0 \end{pmatrix} \qquad \Gamma^{3} = \begin{pmatrix} 0 & -i\mathbf{1} \\ -i\mathbf{1} & 0 \end{pmatrix}$ $\Gamma^{4} = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} \qquad \Gamma^{5} = \begin{pmatrix} 0 & \sigma^{z} \\ \sigma^{z} & 0 \end{pmatrix}$

"Effective Hamiltonian for 3D TI"

In addition we consider antiferromagnetism (AFM)

$$\mathcal{H}_{\rm int} = \frac{UV}{N} \int d^3x \, \left(n_{\rm A\uparrow} n_{\rm A\downarrow} + n_{\rm B\uparrow} n_{\rm B\downarrow} \right)$$

"Hubbard term"

U : parameter to give ${\sf AFM}$

Large $U \longrightarrow AFM$

$$\mathcal{H}_{int} = \frac{UV}{N} \int d^3x \, \left(n_{A\uparrow} n_{A\downarrow} + n_{B\uparrow} n_{B\downarrow} \right)$$
Hubbard-Stratonovich (HS)
transformation
~ Inverse of integrating out a scalar

$$\mathcal{H}_{\text{int}} = \frac{UV}{N} \int d^3x \, \left(n_{\text{A}\uparrow} n_{\text{A}\downarrow} + n_{\text{B}\uparrow} n_{\text{B}\downarrow} \right)$$
Hubbard-Stratonovich (HS) transformation

- A dynamical scalar ϕ that gives $\Gamma^5 d_5$ ($d_5 = \phi$)
- Mass term of ϕ

$$\mathcal{H}_{\text{int}} = \frac{UV}{N} \int d^3x \, \left(n_{\text{A}\uparrow} n_{\text{A}\downarrow} + n_{\text{B}\uparrow} n_{\text{B}\downarrow} \right)$$
Hubbard-Stratonovich (HS) transformation

- A dynamical scalar ϕ that gives $\Gamma^5 d_5$ ($d_5 = \phi$)
- Mass term of ϕ • Mass term of ϕ • Missed in Sekine, Nomura '16 Sekine, Nomura '20

Schütte-Engel '21

(confirmed by private communication with Sekine-san)

$$\mathcal{H}_{\text{int}} = \frac{UV}{N} \int d^3x \, \left(n_{\text{A}\uparrow} n_{\text{A}\downarrow} + n_{\text{B}\uparrow} n_{\text{B}\downarrow} \right)$$
Hubbard-Stratonovich (HS) transformation

- A dynamical scalar ϕ that gives $\Gamma^5 d_5$ ($d_5 = \phi$)
- \bullet Mass term of $~\phi$
- ϕ relates to the axion field $\theta = \frac{1}{4\pi} \int d^3k \frac{2|d| + d^4}{(|d| + d^4)^2 |d|^3} \epsilon^{ijkl} d^i \partial_{k_x} d^j \partial_{k_y} d^k \partial_{k_z} d^l$

R. Li et al. '10

Partition function (TI + AFM)

$$Z = \int \mathcal{D}\psi \mathcal{D}\psi^{\dagger} \mathcal{D}\phi \ e^{iS+iS_{\phi}^{\text{mass}}}$$

$$S = \int d^{4}x \ \psi^{\dagger}(x) \left[i\partial_{t} - H\right]\psi(x) \qquad \qquad H = H_{0} + \delta H$$

$$S_{\phi}^{\text{mass}} = -\int d^{4}x \ M_{\phi}^{2}\phi^{2} \qquad \qquad M_{\phi}^{2} = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{2}{U}$$

Partition function (TI + AFM)

$$Z = \int \mathcal{D}\psi \mathcal{D}\psi^{\dagger} \mathcal{D}\phi \ e^{iS+iS_{\phi}^{\text{mass}}}$$
$$S = \int d^{4}x \ \psi^{\dagger}(x) \left[i\partial_{t} - H\right]\psi(x)$$
$$S_{\phi}^{\text{mass}} = -\int d^{4}x \ M_{\phi}^{2}\phi^{2}$$

$$\Gamma^{5}\phi$$

$$H = H_{0} + \delta H$$

$$M_{\phi}^{2} = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{2}{U}$$

Partition function (TI + AFM)

$$Z = \int \mathcal{D}\psi \mathcal{D}\psi^{\dagger} \mathcal{D}\phi \, e^{iS + iS_{\phi}^{\text{mass}}}$$
$$S = \int d^4x \, \psi^{\dagger}(x) \left[i\partial_t - H\right] \psi(x)$$
$$S_{\phi}^{\text{mass}} = -\int d^4x \, M_{\phi}^2 \phi^2$$

$$\Gamma^{5}\phi$$

$$H = H_{0} + \delta H$$

$$M_{\phi}^{2} = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{2}{U}$$

Summing over ψ , ψ^{\dagger} Effective potential for ϕ Effective potential for θ $\theta = \frac{1}{4\pi} \int d^3k \frac{2|d| + d^4}{(|d| + d^4)^2 |d|^3} \epsilon^{ijkl} d^i \partial_{k_x} d^j \partial_{k_y} d^k \partial_{k_z} d^l$

Effective potential in terms of θ

Potential minimum:

- $\theta = 0$ (PM) $\theta \neq 0$ (AFM)

KI '21

NI phase
Effective potential in terms of θ

KI '21

Effective potential in terms of θ

TI phase

KI '21

Potential minimum: • $\theta = \pi$ (PM) • $\theta \neq 0$ (AFM)

Effective potential in terms of θ

KI '21

Axion in antiferromagnetic insulators

Dynamical axion exits in both TI and NI phases

KI '21

Axion mass

Axion mass is $\ \lesssim {\cal O}({\rm eV})$

Dynamical axion is predicted in topological magnetic insulators

R. Li et al. '10

• $\langle \phi \rangle \ (= m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

• AFM order is assumed

• $\langle \phi \rangle \ (= m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

$$\longrightarrow$$
 Axion mass ~ $\mathcal{O}(\text{meV})$ (:: $m_a^2 \propto m_5^2$)

• AFM order is assumed $U \sim eV$ (in AFM order)

R. Li et al. '10

• $\langle \phi \rangle \ (= m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

 \rightarrow Axion mass ~ $\mathcal{O}(\text{meV})$ (:: $m_a^2 \propto m_5^2$)

• AFM order is *assumed*

R. Li et al. '10

• $\langle \phi \rangle \ (=m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

 \rightarrow Axion mass ~ $\mathcal{O}(\text{meV})$ (:: $m_a^2 \propto m_5^2$)

• AFM order is assumed

No AFM in TI in the first place

 \longrightarrow Fe-doped Bi_2Se_3 is considered

R. Li et al. '10

• $\langle \phi \rangle \ (= m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

 \rightarrow Axion mass ~ $\mathcal{O}(\text{meV})$ (:: $m_a^2 \propto m_5^2$)

• AFM order is assumed

No AFM in TI in the first place

 Fe-double Big Series is monsidered (by first-principles calculation)

J.M. Zhang et al. '13

It looks unlikely to be realized

R. Li et al. '10

- $\langle \phi \rangle \ (= m_5) = 1 \text{ meV}$ is taken
 - (i.e., $\langle \phi \rangle$ is considered to be a free parameter)

 \rightarrow Axion mass ~ $\mathcal{O}(\text{meV})$ (:: $m_a^2 \propto m_5^2$)

- AFM order is assumed
 - No AFM in TI in the first place
 - \longrightarrow Fe-doped Bi_2Se_3 is considered

J.M. Zhang et al. '13

4. Conclusions

We have formulated static and dynamical axions in AFM TI consistently by using path integral

- Dynamical axion appears both in TI and NI
- Axion mass is $\lesssim \mathcal{O}(eV)$
- Material search is crucial for the future axion search

- \bullet How do we describe axion in $\,{\rm Mn_2Bi_2Te_5}$?
- What about axion in NI ?
- Dynamical axion in ferromagnetic state or other magnetic states?

Backups

Basics

Wavefunction of electrons is periodic (due to the crystal structure of the material)

Consequently there is periodicity in the wavenumber space

- Periodicity x o x + a corresponds to k o k + K(K: reciprocal lattice vector)
- It is enough to consider region, $|\mathbf{k}| \lesssim |\mathbf{K}/2|$ (1st Brillouin zone)
- The wavefunction of the electrons is given by $\psi(x) = u_k(x)e^{ik \cdot x}$ where $u_k(x + a) = u_k(x)$ (Bloch's theorem) Bloch function (state)

Thouless, Kohmoto, Nightingale, den Nijs '82

Hall conductivity:

$$\sigma_{xy} \equiv \langle j_x \rangle / E_y$$
$$= \nu \frac{e^2}{h}$$

TKNN formula

$$u \equiv \sum_{n} \int_{BZ} \frac{d^{2}k}{2\pi} [\mathbf{\nabla}_{k} \times \boldsymbol{a}_{n}(\boldsymbol{k})]_{z}$$
 $\boldsymbol{a}_{n}(\boldsymbol{k}) \equiv -i \langle u_{n\boldsymbol{k}} | \frac{\partial}{\partial \boldsymbol{k}} | u_{n\boldsymbol{k}} \rangle$
 $|u_{n\boldsymbol{k}} \rangle$: Bloch state
 n : label of band

→ ν is given by (half-) integer "(Integer) QH effect"

Spin-orbit coupling (SOC)

Electrons with spin up or down are scattered off to the opposite directions

Keywords for topological insulators

- Time reversal invariance (\mathcal{T})
- Strong spin-orbit coupling (SOC)

Keywords for topological insulators

Time reversal invariance (*T*)
 Strong spin-orbit couplin ^j (SOC)

B breaks ${\mathcal T}$ but the combination of B and -B keeps ${\mathcal T}$

Keywords for topological insulators

• Time reversal invariance (\mathcal{T})

Strong spin-orbit coupling (SOC)

Strong SOC is crucial for the realization

Example of 2D TI: HgTe/(Hg,Cd)

König et al. '07

Band inversion happens in the energy band of HgTe

Magnetoelectric (ME) effect

predicted by Landau&Lifshitz

discovered by Dzyaloshinskii '60

- Electric field (E) induces magnetization M
- Magnetic field (B) induces electric polarization P

$$M_j = \alpha_{ij} E_i$$
$$P_i = \alpha_{ij} B_j$$

$$F = -\frac{1}{\mu_0 c} \int d^3 x \, \alpha_{ij} E_i B_j$$
$$M_i = -\frac{1}{V} \left. \frac{\partial F}{\partial E_i} \right|_{B=0}$$
$$P_i = -\frac{1}{V} \left. \frac{\partial F}{\partial B_i} \right|_{E=0}$$

<u>d). Magnetoelectric effect</u>

3D TI cylinder coated with magnetization directing outside

d). Magnetoelectric effect

3D TI cylinder coated with magnetization directing outside

<u>d). Magnetoelectric effect</u>

This ME effect can be understood from the following free energy:

$$F_{\theta} = -\frac{1}{\mu_0} \int d^3x \; \frac{\alpha}{c\pi} \theta \; \boldsymbol{E} \cdot \boldsymbol{B} \qquad \text{with} \quad \theta = \pm \pi$$

d). Magnetoelectric effect

This ME effect can be understood from the following free energy:

$$F_{\theta} = -\frac{1}{\mu_0} \int d^3x \left[\frac{\alpha}{c\pi} \theta \ \boldsymbol{E} \cdot \boldsymbol{B} \right] \quad \text{with} \quad \theta = \pm \pi$$
$$\longrightarrow -\frac{\alpha}{4\pi} \theta F_{\mu\nu} \tilde{F}^{\mu\nu}$$

 $\theta = \pm \pi$ is called static axion ($\theta = 0$ in NI) Effective potential for ϕ

KI '21

$$V_{\phi} = -2 \int \frac{d^3k}{(2\pi)^3} (\sqrt{|d_0|^2 + \phi^2} - |d_0|) + M_{\phi}^2 \phi^2$$

Negative potential

The mass term stabilizes the potential

$$|d_0|^2 = \sum_{a=1}^4 |d^a|^2$$
$$M_{\phi}^2 = \int \frac{d^3k}{(2\pi)^3} \frac{2}{U}$$

Derivation as chiral anomaly

$$H(\boldsymbol{k}) = \sum_{a=1}^{5} d^{a}(\boldsymbol{k})\Gamma^{a}$$

 $(d^1, d^2, d^3, d^4, d^5) = (A_2 \sin k_x, A_2 \sin k_y, A_1 \sin k_z, \mathcal{M}(\mathbf{k}), \phi)$ $\mathcal{M}(\mathbf{k}) = M - 2B_1 - 4B_2 + 2B_1 \cos k_z + 2B_2(\cos k_x + \cos k_y)$

Derivation as chiral anomaly

$$H(\boldsymbol{k}) = \sum_{a=1}^{5} d^{a}(\boldsymbol{k})\Gamma^{a}$$

 $(d^1, d^2, d^3, d^4, d^5) = (A_2 \sin k_x, A_2 \sin k_y, A_1 \sin k_z, \mathcal{M}(\mathbf{k}), \phi)$ $\mathcal{M}(\mathbf{k}) = M - 2B_1 - 4B_2 + 2B_1 \cos k_z + 2B_2 (\cos k_x + \cos k_y)$

> - expand around ${m k}=0$ - redefine ${m k}$

$$H(\mathbf{k}) = k_x \Gamma^1 + k_y \Gamma^2 + k_y \Gamma^3 + M \Gamma^4 + \phi \Gamma^5$$

"Dirac model"

$$H(\mathbf{k}) = k_x \Gamma^1 + k_y \Gamma^2 + k_y \Gamma^3 + M \Gamma^4 + \phi \Gamma^5$$

Unitary transformation of the basis

$$\tilde{U}H(\boldsymbol{k})\tilde{U}^{\dagger} = \beta(\boldsymbol{\gamma}\cdot\boldsymbol{k} + M + \phi\gamma_5)$$

$$S = \int d^4x \ \bar{\psi}[i\gamma^{\mu}(\partial_{\mu} - ieA_{\mu}) - M - i\phi\gamma_5]\psi$$

 $\Gamma^5 \phi \,\, {
m reduces \,to} \,\, i \gamma^5 \phi$

 $i\gamma^5\phi$ term can be rotated away, which gives rise to θ term:

$$S_{\Theta} = -\frac{\alpha}{4\pi} \int d^4 x \,\Theta F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$\Theta = \frac{\pi}{2} [1 - \operatorname{sgn}(M)] \operatorname{sgn}(\phi) + \tan^{-1} \frac{\phi}{M}$$

it is consistent with

$$\theta = \frac{1}{4\pi} \int d^3k \frac{2|d| + d^4}{(|d| + d^4)^2 |d|^3} \epsilon^{ijkl} d^i \partial_{k_x} d^j \partial_{k_y} d^k \partial_{k_z} d^l$$

M dependence

The difference between TI and NI is not clear

KI '21

θ as function of M

calculation for Dirac model is done by Zhang '19
θ as function of M

θ as function of M

θ as function of M

KI '21

θ as function of ϕ

M dependence

Ν

Y. Li et al. '20

Axion mass

It can be suppressed near the phase boundary

Rich magnetic topological states in that region?