# Axion in antiferromagnetic insulators 

Koji Ishiwata<br>Kanazawa University<br>Based on PRD 104, no.1, 016004

Chiba, March 7, 2022

## 1. Introduction

## Axion in condensed matter physics

A hot topic and relates to

- Topological insulator
- Magnetoelectric effect
- Ferromagnetism / Antiferromagnetism
- It may be used in particle axion detection


## Proposals to detect axion/axion-like particles (ALPs)



Marsh et al. '19


Chigusa et al. '21

Topological magnetic insulators are used

## Dynamical axion is predicted in topological magnetic insulators

## ARTICLES

nature
PUBLISHED ONLINE: 7 MARCH 2010 | DOI: 10.1038/NPHYS1534 physics

## Dynamical axion field in topological magnetic insulators

Rundong Li', Jing Wang ${ }^{1,2}$, Xiao-Liang Qi ${ }^{1}$ and Shou-Cheng Zhang ${ }^{1 \star}$

$$
\begin{align*}
\mathcal{S}_{\text {tot }}= & \mathcal{S}_{\text {Maxwell }}+\mathcal{S}_{\text {topo }}+\mathcal{S}_{\text {axion }} \\
= & \frac{1}{8 \pi} \int \mathrm{~d}^{3} x \mathrm{~d} t\left(\epsilon \mathbf{E}^{2}-\frac{1}{\mu} \mathbf{B}^{2}\right)+\frac{\alpha}{4 \pi^{2}} \int \mathrm{~d}^{3} x \mathrm{~d} t\left(\theta_{0}+\delta \theta\right) \mathbf{E} \cdot \mathbf{B} \\
& +g^{2} J \int \mathrm{~d}^{3} x \mathrm{~d} t\left[\left(\partial_{t} \delta \theta\right)^{2}-\left(v_{i} \partial_{i} \delta \theta\right)^{2}-m^{2} \delta \theta^{2}\right] \tag{4}
\end{align*}
$$

## Axion mass $\sim \mathcal{O}(\mathrm{meV})$

$\mathrm{Bi}_{2} \mathrm{Se}_{3} \longleftarrow$ Topological insulator

## ARTICLES

## Dynamical axion field in topological magnetic insulators

Rundong Li', Jing Wang ${ }^{1,2}$, Xiao-Liang Qi ${ }^{1}$ and Shou-Cheng Zhang ${ }^{1 \star}$



## $\mathcal{O}(\mathrm{meV})$

## Today, I would like to address

- What is topological insulator?
- How does antiferromagnetism play a role?
- How is axion in insulators described?


## Plan to talk

1. Introduction
2. Brief review of condensed matter physics (related to axion)
3. Axion in antiferromagnetic topological insulators
4. Conclusions

## 2. Brief review of condensed matter physics <br> (related to axion)

## Topics related to axion in condensed matter physics

a). Insulators
b). Quantum Hall effect
c). Topological insulators

## Minimum basics


$E_{k}$ : energy of electron
$k$ : wavenumber of electron

## Minimum basics


$\longrightarrow$ Insulator

## Quantum Hall (QH) effect

e.g., 2D insulator
© $B$ : magnetic field


Quantum Hall (QH) effect
e.g., 2D insulator


Quantized electric current is induced in $x$ direction
"(Integer) QH effect"

## The band structure



Normal insulator
QH insulator

Topological insulators (TIs)
Idea: combination of two QH insulators


Topological insulators (TIs)
Idea: combination of two QH insulators


Hall current is zero, but spin current exists

Topological insulators (TIs)
Idea: combination of two QH insulators



Hall current is zero, but spin current exists

Such a system can be realized due to SOC (without magnetic field)

SOC: spin orbit coupling

## The band structure

## $\longrightarrow \quad$ The same as QH insulators



Normal insulator (NI)

Band inversion

Topological insulator
(TI)

## 3. Axion in antiferromagnetic topological insulators

## Let's consider 3D TI, $\mathrm{Bi}_{2} \mathrm{Se}_{3}$



Cristal structure


Energy levels

## Let's consider 3D TI, $\mathrm{Bi}_{2} \mathrm{Se}_{3}$




## $\longrightarrow 4$ by 4 matrices

$$
H_{0}(\boldsymbol{k})=\epsilon_{0} \mathbf{1}_{4 \times 4}+\sum_{a=1}^{5} d^{a} \Gamma^{a}
$$

$$
\begin{aligned}
& \left(d^{1}, d^{2}, d^{3}, d^{4}, d^{5}\right)=\left(A_{2} \sin k_{x}, A_{2} \sin k_{y}, A_{1} \sin k_{z}, \mathcal{M}(\boldsymbol{k}), 0\right) \\
& \mathcal{M}(\boldsymbol{k})=M-2 B_{1}-4 B_{2}+2 B_{1} \cos k_{z}+2 B_{2}\left(\cos k_{x}+\cos k_{y}\right) \\
& \Gamma^{1}=\left(\begin{array}{cc}
0 & \sigma^{x} \\
\sigma^{x} & 0
\end{array}\right) \quad \Gamma^{2}=\left(\begin{array}{cc}
0 & \sigma^{y} \\
\sigma^{y} & 0
\end{array}\right) \quad \Gamma^{3}=\left(\begin{array}{cc}
0 & -i \mathbf{1} \\
-i \mathbf{1} & 0
\end{array}\right) \\
& \Gamma^{4}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \Gamma^{5}=\left(\begin{array}{cc}
0 & \sigma^{z} \\
\sigma^{z} & 0
\end{array}\right)
\end{aligned}
$$

## "Effective Hamiltonian for 3D TI"

## In addition we consider antiferromagnetism (AFM)

R. Li et al. ' 10

Suppose electrons at Bi are AFM order


## In addition we consider antiferromagnetism (AFM)

R. Li et al. ' 10

$$
\mathcal{H}_{\mathrm{int}}=\frac{U V}{N} \int d^{3} x\left(n_{\mathrm{A} \uparrow} n_{\mathrm{A} \downarrow}+n_{\mathrm{B} \uparrow} n_{\mathrm{B} \downarrow}\right)
$$

"Hubbard term"
$U$ : parameter to give AFM


$$
\mathcal{H}_{\mathrm{int}}=\frac{U V}{N} \int d^{3} x\left(n_{\mathrm{A} \uparrow} n_{\mathrm{A} \downarrow}+n_{\mathrm{B} \uparrow} n_{\mathrm{B} \downarrow}\right)
$$

Hubbard-Stratonovich (HS) transformation
~ Inverse of integrating out a scalar

$$
\mathcal{H}_{\mathrm{int}}=\frac{U V}{N} \int d^{3} x\left(n_{\mathrm{A} \uparrow} n_{\mathrm{A} \downarrow}+n_{\mathrm{B} \uparrow} n_{\mathrm{B} \downarrow}\right)
$$

- A dynamical scalar $\phi$ that gives $\Gamma^{5} d_{5} \quad\left(d_{5}=\phi\right)$
- Mass term of $\phi$

$$
\mathcal{H}_{\mathrm{int}}=\frac{U V}{N} \int d^{3} x\left(n_{\mathrm{A} \uparrow} n_{\mathrm{A} \downarrow}+n_{\left.\mathrm{B} \uparrow n_{\mathrm{B} \downarrow}\right)}\right)
$$

- A dynamical scalar $\phi$ that gives $\Gamma^{5} d_{5} \quad\left(d_{5}=\phi\right)$
- Mass term of $\phi$

$$
\mathcal{H}_{\mathrm{int}}=\frac{U V}{N} \int d^{3} x\left(n_{\mathrm{A} \uparrow} n_{\mathrm{A} \downarrow}+n_{\mathrm{B} \uparrow} n_{\mathrm{B} \downarrow}\right)
$$

- A dynamical scalar $\phi$ that gives $\Gamma^{5} d_{5} \quad\left(d_{5}=\phi\right)$
- Mass term of $\phi$
- $\phi$ relates to the axion field

$$
\theta=\frac{1}{4 \pi} \int d^{3} k \frac{2|d|+d^{4}}{\left(|d|+d^{4}\right)^{2}|d|^{3}} \epsilon^{i j k l} d^{i} \partial_{k_{x}} d^{j} \partial_{k_{y}} d^{k} \partial_{k_{z}} d^{l}
$$

## Partition function (TI + AFM)

$$
\begin{array}{ll}
Z=\int \mathcal{D} \psi \mathcal{D} \psi^{\dagger} \mathcal{D} \phi e^{i S+i S_{\phi}^{\text {mass }}} & \\
S=\int d^{4} x \psi^{\dagger}(x)\left[i \partial_{t}-H\right] \psi(x) & H=H_{0}+\delta H \\
S_{\phi}^{\text {mass }}=-\int d^{4} x M_{\phi}^{2} \phi^{2} & M_{\phi}^{2}=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{2}{U}
\end{array}
$$

## Partition function (TI + AFM)

$$
\begin{aligned}
& Z=\int \mathcal{D} \psi \mathcal{D} \psi^{\boldsymbol{D} \phi} \phi_{i}^{i S} e^{i S i S_{\phi}^{\text {ass }}} \\
& S=\int d^{4} x \psi^{\dagger}(x)\left[i \partial_{t}-H\right] \psi(x) \\
& S_{\phi}^{\text {mass }}=-\int d^{4} x M_{\phi}^{2} \phi^{2}
\end{aligned}
$$

$$
\begin{aligned}
H & =H_{0} \\
M_{\phi}^{2} & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{2}{U}
\end{aligned}
$$

## Partition function (TI + AFM)

$$
\begin{aligned}
& Z=\int \mathcal{D} \psi \mathcal{D} \psi^{\dagger} \mathcal{D} \phi_{i}^{i S} e^{i S}{ }^{2 S_{\phi}^{\text {mass }}} \\
& S=\int d^{4} x \psi^{\dagger}(x)\left[i \partial_{t}-H\right] \psi(x) \\
& S_{\phi}^{\text {mass }}=-\int d^{4} x M_{\phi}^{2} \phi^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma^{5} \phi \\
& H=H_{0}+\delta H \\
& M_{\phi}^{2}=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{2}{U}
\end{aligned}
$$

Summing over $\psi, \psi^{\dagger}$
Effective potential for $\phi$

## Effective potential for $\theta$

Effective model for 3D TI, $M[\mathrm{eV}]=0.1$


$$
\begin{array}{r}
A_{1}=A_{2}=1 \\
B_{1}=B_{2}=-0.5
\end{array}
$$

Effective model for 3D TI, $M[\mathrm{eV}]=0.1$


$$
\begin{array}{r}
A_{1}=A_{2}=1 \\
B_{1}=B_{2}=-0.5
\end{array}
$$



$$
\langle\phi\rangle \sim\left\langle S_{A}\right\rangle=-\left\langle S_{B}\right\rangle
$$

VEV of $\phi$ is the order parameter of AFM

- $\langle\phi\rangle=0$

PM order

- $\langle\phi\rangle \neq 0$

AFM order

PM (paramagnetic)


## Potential minimum:

- $\theta=0 \quad$ (PM)
- $\theta \neq 0$ (AFM)



Potential minimum:

- $\begin{array}{ll}-\quad=\pi & \text { (PM) }\end{array}$
- $\theta \neq 0$
(AFM)

Effective potential in terms of $\theta$

"static axion"

## Axion in antiferromagnetic insulators

Effective model for 3D TI, $M[\mathrm{eV}]=0.1$


Effective model for 3D TI, $M[\mathrm{eV}]=-0.1$


Dynamical axion exits in both TI and NI phases

Effective model for 3D TI


Axion mass is $\lesssim \mathcal{O}(\mathrm{eV})$

## Dynamical axion is predicted in topological magnetic insulators

## ARTICLES

PUBLISHED ONLINE: 7 MARCH 2010 | DOI: 10.1038/NPHYS1534 physics

## Dynamical axion field in topological magnetic insulators

Rundong Li', Jing Wang ${ }^{1,2}$, Xiao-Liang Qi ${ }^{1}$ and Shou-Cheng Zhang ${ }^{1 \star}$

$\mathrm{Bi}_{2} \mathrm{Se}_{3}$


## ?

The thing would be ...

- $\langle\phi\rangle\left(=m_{5}\right)=1 \mathrm{meV}$ is taken
(i.e., $\langle\phi\rangle$ is considered to be a free parameter)
- AFM order is assumed

The thing would be ...

- $\langle\phi\rangle\left(=m_{5}\right)=1 \mathrm{meV}$ is taken
(i.e., $\langle\phi\rangle$ is considered to be a free parameter)

$$
\longrightarrow \quad \text { Axion mass } \sim \mathcal{O}(\mathrm{meV}) \quad\left(\because m_{a}^{2} \propto m_{5}^{2}\right)
$$

But this is naively difficult since

$$
\text { - AFM order is ass } m_{5} \sim U \sim \mathrm{eV} \quad \text { (in AFM order) }
$$

The thing would be ...

- AFM order is assumed

The thing would be ...

- $\langle\phi\rangle\left(=m_{5}\right)=1 \mathrm{meV}$ is taken
(i.e., $\langle\phi\rangle$ is consiciered to be a free parameter)
- AFM order is assumed

No AFM in TI in the first place
$\longrightarrow \mathrm{Fe}$-doped $\mathrm{Bi}_{2} \mathrm{Se}_{3}$ is considered

## The thing would be ...

## $\left(=m_{5}\right)=1 \mathrm{meV}$ is taken <br> (i.e., $\langle\phi\rangle$ is considered to be a free parameter)

## - AFM order is assumed

"likely to be AFM"
(by first-principles calculation)
$\longrightarrow$ It looks unlikely to be realized

The thing would be ...

$\longrightarrow$ Consistent determination of $\langle\phi\rangle$ is crucial for axion mass

- AFM order is assumed



## 4. Conclusions

We have formulated static and dynamical axions in AFM TI consistently by using path integral

- Dynamical axion appears both in TI and NI
- Axion mass is $\lesssim \mathcal{O}(\mathrm{eV})$
- Material search is crucial for the future axion search


## Discussion

- How do we describe axion in $\mathrm{Mn}_{2} \mathrm{Bi}_{2} \mathrm{Te}_{5}$ ?
- What about axion in NI ?
- Dynamical axion in ferromagnetic state or other magnetic states?


## Backups

## Basics

- Wavefunction of electrons is periodic (due to the crystal structure of the material)

- Consequently there is periodicity in the wavenumber space


- Periodicity $\boldsymbol{x} \rightarrow \boldsymbol{x}+\boldsymbol{a}$ corresponds to $\boldsymbol{k} \rightarrow \boldsymbol{k}+\boldsymbol{K}$ ( $K$ : reciprocal lattice vector)
- It is enough to consider region, $|\boldsymbol{k}| \lesssim|\boldsymbol{K} / 2|$ (1st Brillouin zone)
- The wavefunction of the electrons is given by $\psi(\boldsymbol{x})=u_{\boldsymbol{k}}(\boldsymbol{x}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}$ where $u_{\boldsymbol{k}}(\boldsymbol{x}+\boldsymbol{a})=u_{\boldsymbol{k}}(\boldsymbol{x})$
(Bloch's theorem)

Thouless, Kohmoto, Nightingale, den Nijs '82
Hall conductivity:

$$
\begin{aligned}
\sigma_{x y} & \equiv\left\langle j_{x}\right\rangle / E_{y} \\
& =\nu \frac{e^{2}}{h}
\end{aligned}
$$

$$
\begin{gathered}
\nu \equiv \sum_{n} \int_{\mathrm{BZ}} \frac{d^{2} k}{2 \pi}\left[\boldsymbol{\nabla}_{\boldsymbol{k}} \times \boldsymbol{a}_{n}(\boldsymbol{k})\right]_{z} \\
\boldsymbol{a}_{n}(\boldsymbol{k}) \equiv-i\left\langle u_{n \boldsymbol{k}}\right| \frac{\partial}{\partial \boldsymbol{k}}\left|u_{n \boldsymbol{k}}\right\rangle
\end{gathered}
$$

$\left|u_{n k}\right\rangle$ : Bloch state $n$ : label of band
$\longrightarrow \nu$ is given by (half-) integer
"(Integer) QH effect"

## Spin-orbit coupling (SOC)

e.g.,

$$
H_{\mathrm{SO}}=V(r) \boldsymbol{L} \cdot \boldsymbol{S}
$$



Electrons with spin up or down are scattered off to the opposite directions

Keywords for topological insulators

- Time reversal invariance ( $\mathcal{T}$ )
- Strong spin-orbit coupling (SOC)

Keywords for topological insulators

- Time reversal invariance ( $\mathcal{T}$ )
- Strong spin-orbit coupling (SOC)

$B$ breaks $\mathcal{T}$ but the combination of $B$ and $-B$ keeps $\mathcal{T}$

Keywords for topological insulators

- Time reversal invariance ( $\mathcal{T}$ )
- Strong spin-orbit coupling (SOC)


Strong SOC is crucial for the realization

## Example of 2D TI: $\mathrm{HgTe} /(\mathrm{Hg}, \mathrm{Cd})$

König et al. '07

CdTe HgTe CdTe
CdTe HgTe CdTe
$\xrightarrow[\begin{array}{c}\text { Thicker HgTe layer } \\ \text { (stronger SOC) }\end{array}]{\longrightarrow}$

N
TI

Band inversion happens in the energy band of HgTe

## Magnetoelectric (ME) effect

predicted by Landau\&Lifshitz

- Electric field ( $\boldsymbol{E}$ ) induces magnetization $\boldsymbol{M}$
- Magnetic field $(\boldsymbol{B})$ induces electric polarization $\boldsymbol{P}$

$$
\begin{aligned}
M_{j} & =\alpha_{i j} E_{i} \\
P_{i} & =\alpha_{i j} B_{j}
\end{aligned}
$$

$$
\begin{gathered}
F=-\frac{1}{\mu_{0} c} \int d^{3} x \alpha_{i j} E_{i} B_{j} \\
M_{i}=-\left.\frac{1}{V} \frac{\partial F}{\partial E_{i}}\right|_{B=0} \\
P_{i}=-\left.\frac{1}{V} \frac{\partial F}{\partial B_{i}}\right|_{E=0}
\end{gathered}
$$

3D TI cylinder coated with magnetization directing outside

magnetization


Hall current

## Half-integer AQH current

## $\downarrow$

The current induces magnetization in $z$ direction

$$
\boldsymbol{M}= \pm \frac{\alpha}{\mu_{0} c} \boldsymbol{E}
$$

3D TI cylinder coated with magnetization directing outside
Qi, Hughes, Zhang '08

magnetization


Hall current

## Half-integer AQH current

## $\downarrow$

The current induces magnetization in $z$ direction

$$
\boldsymbol{M}= \pm \frac{\alpha}{\mu_{0} c} E
$$

The coefficient is given by fine-structure constant

This ME effect can be understood from the following free energy:

$$
F_{\theta}=-\frac{1}{\mu_{0}} \int d^{3} x \frac{\alpha}{c \pi} \theta \boldsymbol{E} \cdot \boldsymbol{B} \quad \text { with } \quad \theta= \pm \pi
$$

This ME effect can be understood from the following free energy:

$$
\begin{gathered}
F_{\theta}=-\frac{1}{\mu_{0}} \int d^{3} x: \frac{\alpha}{c \pi} \theta \boldsymbol{E} \cdot \boldsymbol{B} \quad \text { with } \theta= \pm \pi \\
\longrightarrow-\frac{\alpha}{4 \pi} \theta F_{\mu \nu} \tilde{F}^{\mu \nu} \\
\theta= \pm \pi \text { is called static axion } \\
(\theta=0 \text { in } \mathrm{NI})
\end{gathered}
$$

## Effective potential for $\phi$

$$
V_{\phi}=2 \int \frac{d^{3} k}{(2 \pi)^{3}}\left(\sqrt{\left|d_{0}\right|^{2}+\phi^{2}}-\left|d_{0}\right|\right) M_{\phi}^{2} \phi^{2}
$$

Negative potential

The mass term stabilizes the potential

$$
\begin{aligned}
\left|d_{0}\right|^{2} & =\sum_{a=1}^{4}\left|d^{a}\right|^{2} \\
M_{\phi}^{2} & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{2}{U}
\end{aligned}
$$

## Derivation as chiral anomaly

$$
H(\boldsymbol{k})=\sum_{a=1}^{5} d^{a}(\boldsymbol{k}) \Gamma^{a}
$$

$\left(d^{1}, d^{2}, d^{3}, d^{4}, d^{5}\right)=\left(A_{2} \sin k_{x}, A_{2} \sin k_{y}, A_{1} \sin k_{z}, \mathcal{M}(\boldsymbol{k}), \phi\right)$

$$
\mathcal{M}(\boldsymbol{k})=M-2 B_{1}-4 B_{2}+2 B_{1} \cos k_{z}+2 B_{2}\left(\cos k_{x}+\cos k_{y}\right)
$$

## Derivation as chiral anomaly

$$
H(\boldsymbol{k})=\sum_{a=1}^{5} d^{a}(\boldsymbol{k}) \Gamma^{a}
$$

$$
\left(d^{1}, d^{2}, d^{3}, d^{4}, d^{5}\right)=\left(A_{2} \sin k_{x}, A_{2} \sin k_{y}, A_{1} \sin k_{z}, \mathcal{M}(\boldsymbol{k}), \phi\right)
$$

$$
\mathcal{M}(\boldsymbol{k})=M-2 B_{1}-4 B_{2}+2 B_{1} \cos k_{z}+2 B_{2}\left(\cos k_{x}+\cos k_{y}\right)
$$

- expand around $\boldsymbol{k}=0$
- redefine $k$

$$
H(\boldsymbol{k})=k_{x} \Gamma^{1}+k_{y} \Gamma^{2}+k_{y} \Gamma^{3}+M \Gamma^{4}+\phi \Gamma^{5}
$$

"Dirac model"

$$
H(\boldsymbol{k})=k_{x} \Gamma^{1}+k_{y} \Gamma^{2}+k_{y} \Gamma^{3}+M \Gamma^{4}+\phi \Gamma^{5}
$$

Unitary transformation of the basis

$$
\tilde{U} H(\boldsymbol{k}) \tilde{U}^{\dagger}=\beta\left(\gamma \cdot \boldsymbol{k}+M+\phi \gamma_{5}\right)
$$

$$
S=\int d^{4} x \bar{\psi}\left[i \gamma^{\mu}\left(\partial_{\mu}-i e A_{\mu}\right)-M-i \phi \gamma_{5}\right]_{i} \psi
$$

$\Gamma^{5} \phi$ reduces to $i \gamma^{5} \phi$
$i \gamma^{5} \phi$ term can be rotated away, which gives rise to $\theta$ term:

$$
\begin{aligned}
S_{\Theta} & =-\frac{\alpha}{4 \pi} \int \mathrm{~d}^{4} x \Theta F_{\mu \nu} \tilde{F}^{\mu \nu} \\
\Theta & =\frac{\pi}{2}[1-\operatorname{sgn}(M)] \operatorname{sgn}(\phi)+\tan ^{-1} \frac{\phi}{M}
\end{aligned}
$$

it is consistent with

$$
\theta=\frac{1}{4 \pi} \int d^{3} k \frac{2|d|+d^{4}}{\left(|d|+d^{4}\right)^{2}|d|^{3}} \epsilon^{i j k l} d^{i} \partial_{k_{x}} d^{j} \partial_{k_{y}} d^{k} \partial_{k_{z}} d^{l}
$$



## $\theta$ as function of $M$

Effective model for 3D TI

calculation for Dirac
model is done by
Zhang '19

## $\theta$ as function of $M$

Effective model for 3D TI


Effective model for 3D TI



Effective model for 3D TI



## $\underline{\theta \text { as function of } \phi}$

Effective model for 3D TI


## $M$ dependence


Y. Li et al. '20


## Axion mass



It can be suppressed near the phase boundary

Rich magnetic topological states in that region?

