

Leptogenesis and muon g-2 in gauged $U(1)_{L_u-L_\tau}$ extension

Shintaro Eijima (ICRR)

In collaboration with Masahiro Ibe and Kai Murai (ICRR)

Mar. 7, 2022 @ Exploration of Particle Physics and Cosmology with Neutrinos Workshop 2022

Muon g-2 and gauged $U(1)_{L_{\mu}-L_{\tau}}$

 $(g-2)_{\mu}$ anomaly can be explained with Z' in gauged $U(1)_{L_{\mu}-L_{\tau}}$ models

Deviation from the Standard Model: 4.2σ

[The Muon g-2 Collaboration ('21)]

Gauge coupling:

$$g_{Z'} \approx 10^{-4} - 10^{-3}$$

Mass:

$$M_{Z'} \approx 10 - 100 \,\mathrm{MeV}$$

Breaking scale:

$$v' = \mathcal{O}(10) \,\text{GeV}$$

Type-I seesaw mechanism under $U(1)_{L_{\mu}-L_{\tau}}$ -1-

 ν_R 's under gauged $U(1)_{L_u-L_ au}$ can reproduce neutrino oscillations

Minimal gauged
$$U(1)_{L_{\mu}-L_{\tau}}$$
 [Asai, Hamaguchi, Nagata ('17)]

Charge
$$L_{\mu}, \nu_{R\mu}$$
: +1, $L_{\tau}, \nu_{R\tau}$: -1, Others (L_e, ν_{Re}, \cdots) : 0
$$U(1)_{L_{\mu}-L_{\tau}} \text{ breaking scalar } \sigma$$
: +1

Lagrangian of neutrino sector

$$\mathcal{L}_{\nu} = -\lambda_{\nu} \overline{L_{\alpha}} \tilde{H} \nu_{R\alpha} - \frac{M_{R}}{2} \overline{\nu_{R\alpha}^{c}} \nu_{R\beta}$$

$$-\frac{1}{2} \sum_{\alpha,\beta=e,\mu} h_{\alpha\beta} \sigma^{*} \overline{\nu_{R\alpha}^{c}} \nu_{R\beta} - \frac{1}{2} \sum_{\alpha,\beta=e,\tau} h_{\alpha\beta} \sigma \overline{\nu_{R\alpha}^{c}} \nu_{R\beta} + h.c.$$

$$\alpha = e, \mu, \tau$$

$$\lambda_{
u} = diag(\lambda_e, \lambda_{\mu}, \lambda_{ au})$$

$$M_R = \begin{pmatrix} M_{ee} & 0 & 0 \\ 0 & 0 & M_{\mu au} \\ 0 & M_{\mu au} & 0 \end{pmatrix}$$

Type-I seesaw mechanism under $U(1)_{L_{\mu}-L_{\tau}}$ -2-

ν_R 's under gauged $U(1)_{L_u-L_{\tau}}$ can reproduce neutrino oscillations

$$\nu$$
 mass matrix: $m_{\nu} = -\langle H \rangle^2 U_{PMNS}^{\dagger} [\lambda_{\nu} M_R^{-1} \lambda_{\nu}^T] U_{PMNS}^*$

All ν parameters are determined by observed values of oscillations

Leptogenesis under $U(1)_{L_{\mu}-L_{\tau}}$

How about Leptogenesis??

We investigated whether leptogenesis can work or not in the gauged $U(1)_{L_u-L_\tau}$ model responsible for muon g-2

From
$$\nu$$
 mass matrix $\langle H \rangle^2 m_{\nu}^{-1} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} \frac{M_{ee}}{\lambda_e^2} & \frac{h_{e\mu}\langle \sigma \rangle}{\lambda_e \lambda_{\mu}} & \frac{h_{e\tau}\langle \sigma \rangle}{\lambda_e \lambda_{\mu}} \\ \frac{h_{e\mu}\langle \sigma \rangle}{\lambda_e \lambda_{\mu}} & 0 & \frac{M_{\mu\tau}}{\lambda_{\mu} \lambda_{\tau}} \\ \frac{h_{e\tau}\langle \sigma \rangle}{\lambda_e \lambda_{\tau}} & \frac{M_{\mu\tau}}{\lambda_{\mu} \lambda_{\tau}} & 0 \end{pmatrix}$

$$\longrightarrow M_{ee} M_{\nu\tau} \sim h_{e\nu} h_{e\tau} \langle \sigma \rangle^2 \qquad (\langle \sigma \rangle = v'/2)$$

- i) $M_{ee} \ll M_{\mu\tau}$ (or $M_{ee} \gg M_{\mu\tau}$): Heavier mass $\lesssim 10^{12}$ GeV
 - Decaying leptogenesis

[Fukugita, Yanagida ('86)][Pilaftsis ('97)][Pilaftsis, Underwood ('05)]

- ii) $M_{ee} \sim M_{\mu\tau}$: Degenerate mass $\leq \langle \sigma \rangle = \mathcal{O}(10)$ GeV
 - Oscillating leptogenesis

[Akhmedov, Rubakov, Smirnov ('98)][Asaka, Shaposhnikov ('05)]

Broken or not in cosmological history?

Whether $U(1)_{L_u-L_\tau}$ is broken or preserved is important for leptogenesis

$$V(\sigma) = (-\mu_{\sigma}^2 + \delta m^2(T)) |\sigma|^2 + \lambda_{\sigma} |\sigma|^4$$

: quantum corrections

Spontaneous breaking

Restoration

Restoration with $g_{Z'}$ is evaluated when $U(1)_{L_{\mu}-L_{\tau}}$ is broken and no σ , ν_R and Z' initially

Thermalization

 $U(1)_{L_{\mu}-L_{\tau}}$ gauge interaction thermalizes σ through $\mu\bar{\mu}(\tau\bar{\tau})\to\sigma\sigma^*$

Comparing
$$\Gamma \approx \frac{g_{Z'}^4}{4\pi} T$$
 to $H = \left(\frac{\pi^2 g_*}{90}\right)^{\frac{1}{2}} \frac{T^2}{M_p}$ $(M_p = 2.4 \cdot 10^{18} \, \text{GeV})$

Thermalization temperature: $T_{th} \sim 4 \cdot 10^3 \, \text{GeV} \left(\frac{g_{Z'}}{5 \cdot 10^{-4}} \right)^4$

At $T \leq T_{th}$, thermal mass is $\delta m^2(T) = \lambda_{\sigma} T^2$

$$(-\mu_{\sigma}^2 + \delta m^2(T)) = (-\lambda_{\sigma} v^{'2} + \delta m^2(T) > 0$$
 down to $T = v'$

 $U(1)_{L_u-L_\tau}$ symmetry is restored in $v' \leq T \leq T_{th}$

 ν_R and Z' are also thermalized at $T \leq T_{th}$ and contribute to $\delta m^2(T)$

Finite density effect

Even before thermalization particles around σ provide mass correction

$$\delta m^2(T) = \lambda_\sigma \frac{n_\sigma(T)}{\langle 2p^0 \rangle}$$

Solving Boltzmann eq.

$$n_{\sigma}(T) pprox rac{g_{Z'}^4}{4\pi} M_p T^2$$
 for $T > T_{th}$

$$\longrightarrow \frac{\delta m^2(T)}{\mu_{\sigma}^2} \approx 2 \cdot 10^3 \left(\frac{50 \,\text{GeV}}{v'}\right)^2 \left(\frac{g_{Z'}}{5 \cdot 10^{-4}}\right)^8 \left(\frac{T}{T_{th}}\right) \quad (\langle 2p^0 \rangle = 2T)$$

 $U(1)_{L_u-L_\tau}$ symmetry is also restored at $T>T_{th}$

Restoration of $U(1)_{L_{\mu}-L_{\tau}}$

 $U(1)_{L_u-L_\tau}$ is exact in temperatures in which leptogenesis can take place

For
$$g_{Z'} = 5 \cdot 10^{-4}$$
 and $v' = 50$ GeV from muon g-2,

Restoration by thermal mass Restoration by finite density effect $v' \qquad T_{sph} \approx 130 \qquad \qquad T_{th} = 4 \cdot 10^3 \qquad \qquad T/\text{GeV}$: sphaleron freeze-out (baryon asymmetry is fixed)

Leptogenesis

$$U(1)_{L_{\mu}-L_{\tau}}$$
 is exact

Right-handed neutrinos under exact $U(1)_{L_{\mu}-L_{\tau}}$

There still exist ingredients; CP violation and lepton number violation

CP violation: at least one physical phase in λ_{α} , $h_{e\mu}$, $h_{e\tau}$ and M Lepton number violation: M_{ee} and $M_{\mu\tau}$

For decays, Pseudo-Dirac representation $\Psi \equiv \begin{pmatrix} \nu_{R\mu}^c \\ \nu_{R\tau} \end{pmatrix}$ for mass basis

$$\mathcal{L}_{\nu_{Re}} = \overline{\nu_{Re}} i \partial \!\!\!/ \nu_{Re} - \lambda_e \overline{L_e} \tilde{H} \nu_{Re} - \frac{M_{ee}}{2} \overline{\nu_{Re}^c} \nu_{Re} + h.c.,$$

$$\mathcal{L}_{\Psi} = \overline{\Psi} i D \!\!\!/ \Psi - M_{\mu\tau} \overline{\Psi} \Psi$$

$$- \left(\lambda_{\mu} \overline{L_{\mu}} \tilde{H} P_R \Psi^c + \lambda_{\tau} \overline{L_{\tau}} \tilde{H} P_R \Psi - \frac{1}{2} h_{e\mu} \sigma^* \overline{\nu_{Re}^c} P_R \Psi^c - \frac{1}{2} h_{e\tau} \sigma \overline{\nu_{Re}^c} P_R \Psi + h.c. \right)$$

Leptogenesis with either ν_{Re} or Ψ decay can be considered

Decaying Leptogenesis

CP violation arises interference between tree and loop diagrams

Vertex diagram

Product of Yukawa couplings in interference term

$$\nu_{Re}$$
 decay: $|\lambda_e|^4$

 Ψ decay: $|\lambda_{\mu}|^2 |\lambda_{\tau}|^2$

Real

Self-energy diagram Not exists. Just self-energy of incoming u_R

Restricted flavor structure forbids to provide CP violation

No leptogenesis from decays

Oscillating Leptogenesis

CP violating ν_R oscillations are source of lepton asymmetry

$$\frac{\text{Density matrix formalizm}}{\text{Density matrix of } \nu_R: \ \rho_{\nu_R} = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} & \rho_{e\tau} \\ \rho_{\mu e} & \rho_{\mu\mu} & \rho_{\mu\tau} \\ \rho_{\tau e} & \rho_{\tau\mu} & \rho_{\tau\tau} \end{pmatrix} \quad \begin{cases} \rho_{\alpha\alpha} : \text{occupation number} \\ \rho_{\alpha\beta} : \text{correlation among flavors} \end{cases}$$

Oscillations are described by commutator with effective Hamiltonian

$$\frac{d\rho_{\nu_R}}{dt} \supset -i[H_{\nu_R}, \rho_{\nu_R}] \qquad (3x3)$$

$$H_{\nu_R} = \underbrace{H_0 + H_I} \qquad \text{Diagonal from } \lambda_{\alpha}, \ h_{e\mu}, \ \text{and } h_{e\tau}$$

$$H_0 = p \, \mathbf{1} + \frac{1}{2p} M_R^{\dagger} M_R = p \, \mathbf{1} + \frac{1}{2p} \begin{pmatrix} M_{ee}^2 & 0 & 0 \\ 0 & M_{\mu\tau}^2 & 0 \\ 0 & 0 & M_{\mu\tau}^2 \end{pmatrix} \quad \text{Diagonal}$$

Restricted flavor structure forbids to give rise ν_R oscillations

No leptogenesis from oscillations too

Summary

We found incompatibility of leptogenesis with the gauged $U(1)_{L_{\mu}-L_{\tau}}$ extension responsible for muon g-2

Contrary to optimistic expectation, the minimal extension fails to explain the muon g-2 anomaly, neutrino masses, and the baryon asymmetry of the Universe at the same time

Other approaches or further extensions compatible with $U(1)_{L_{\mu}-L_{\tau}}$ are necessary to construct theory for such phenomena beyond the Standard Model