Pseudo-Nambu-Goldstone Dark Matter Model Inspired by Grand Unification

Naoki Yamatsu Department of Physics, Kyushu University

Exploration of Particle Physics and Cosmology with Neutrinos Workshop 2022 @ Chiba, March 7-8, 2022

This talk is mainly based on [1, PRD**104**,035011(2021)] collaborated with Y. Abe (Kyoto U.), T. Toma (Kanazawa U.), K. Tsumura (Kyushu U.). [This work was supported in part by JSPS grants JP18H05543.]

Purpose of this talk

We will discuss an SO(10) GUT model which contains a dark matter (DM) candidate and satisfies gauge coupling unification and constraint from proton decay and dark matter, and reproduce neutrino masses.

Key words:

Grand unification, gauge coupling unification, proton decay, SO(10), $G_{PS}(=SU(4)_C \times SU(2)_L \times SU(2)_R)$, $U(1)_{B-L}$, neutrino mass, (pseudo-Nambu-Goldstone boson) dark matter.

Table of Content

- Introduction (13 pages)
 Grand gauge group, Gauge coupling unification Proton decay, Neutrino mass, Dark matter Unification scale, Neutrino mass scale, ...
- 2. An SO(10) pNGB DM Model (9 pages)
- 3. Summary (1 page)

. . .

Motivation for Grand Unification [2, 3, R.Slansky'81;...]

The idea of grand unification has attractive features; e.g.,

- Unification of the SM gauge bosons
- Unification of the SM Weyl fermions
- 4D SM gauge anomaly cancellation
- Charge quantization for quarks and leptons

The SM matter content: The Standard Model

Field	Symbol	(SU(3), SU(2), U(1))	$SL(2,\mathbb{C})$
Quark doublet	q_j	(3, 2, +1/6)	(1/2,0)
Up-type quark	u_j^c	$(ar{f 3}, {f 1}, -2/3)$	(1/2, 0)
Down-type quark	d_j^c	$(\bar{3}, 1, +1/3)$	(1/2, 0)
Lepton doublet	ℓ_j	(1, 2, -1/2)	(1/2, 0)
Charged lepton	e_j^c	(1, 1, +1)	(1/2, 0)
Higgs	ϕ	(1, 2, +1/2)	(0,0)
Gluon	G_A	$({f 8},{f 1},\pm 0)$	(1/2,1/2)
Weak	W_I	$(1,3,\pm 0)$	(1/2,1/2)
Hyper	B	$(1, 1, \pm 0)$	(1/2,1/2)

The SM matter content: Grand Unification [4, Georgi, Glashow'74]

Field	Symbol	(SU(3), SU(2), U(1))	$SL(2,\mathbb{C})$
Quark doublet	q_j	(3, 2, +1/6)	(1/2,0)
Up-type quark	u_j^c	$(ar{3}, m{1}, -2/3)$	(1/2, 0)
Down-type quark	d_j^c	$(\bar{3}, 1, +1/3)$	(1/2, 0)
Lepton doublet	ℓ_j	(1, 2, -1/2)	(1/2, 0)
Charged lepton	e_j^c	(1, 1, +1)	(1/2, 0)
Higgs	ϕ	(1, 2, +1/2)	(0,0)
Gluon	G_A	$(8,1,\pm0)$	(1/2,1/2)
Weak	W_I	$(1,3,\pm 0)$	(1/2,1/2)
Hyper	В	$(1,1,\pm 0)$	(1/2,1/2)

Unification of SM gauge bosons and symmetry

Candidate for GUT gauge group [4–7, H.Georgi,S.L.Glashow'74;...]

Туре	Rank 4	Rank 5	Rank 6	Rank 7	• • •
A_n	SU(5)	SU(6)	SU(7)	SU(8)	•••
B_n	SO(9)	SO(11)	SO(13)	SO(15)	• • •
C_n	USp(8)	USp(10)	USp(12)	USp(14)	•••
D_n		SO(10)	SO(12)	SO(14)	• • •
Ex.	F_4		E_6	E_7	•••

 $G_{\rm SM}$ can be embedded into the above groups, but many groups are excluded by exsistence of chiral fermions [2, 8, M.Gell-Mann,P.Ramond,R.Slansky'78;...].

Unification of SM gauge bosons and symmetry Candidate for GUT gauge group (Gray cell: no chiral fermion)

Туре	Rank 4	Rank 5	Rank 6	Rank 7	•••
A_n	SU(5)	SU(6)	SU(7)	SU(8)	• • •
B_n	SO(9)	SO(11)	SO(13)	SO(15)	•••
C_n	USp(8)	USp(10)	USp(12)	USp(14)	• • •
D_n		SO(10)	SO(12)	SO(14)	• • •
Ex.	F_4		E_6	E_7	• • •

The existence of chiral fermions drastically reduces candidates for 4D GUT gauge groups.

(cf. in higher dimensional framework, see e.g. Ref. [3, N.Y.'15].)

Unification of SM fermions

Fermion	$G_{ m SM}$	SU(5)	SO(10)	SU(16)
q_j	(3, 2, +1/6)	10	16	16
u_j^c	$(\bar{3}, 1, -2/3)$			
e_j^c	(1, 1, +1)			
d_j^c	$(\bar{3}, 1, +1/3)$	$\overline{5}$		
ℓ_j	(1, 2, -1/2)			
ν_j^c	(1 , 1 ,0)	1		

SU(16) is "maximal gauged symmetry" [9, J.C.Pati,A.Salam,J.A.Strathdee'81]. Unfortunately, due to gauge anomaly, not all part of SU(16) can be gauged in 4D effective theories with three chiral generations. SO(10) seems to be the best candidate from unification of fermions.

March 7-8, 2022 N. Yamatsu Exploration of Particle Physics and Cosmology with Neutrinos Workshop 2022 @ Chiba SO(10) GUT gauge group [6, H.Fritzsch, P.Minkowski'75] SO(10) $G_{\rm PS} = SU(2)_L \times SU(2)_R \times SU(4)_C$ $G_{2231} = SU(2)_L \times SU(2)_R \times SU(3)_C \times U(1)_{B-L}$ $G_{\rm SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$

Note: $U(1)_Y$ is a linear combination of $U(1)_R (\subset SU(2)_R)$ and $U(1)_{B-L}$.

SO(10) gauge boson

Gauge	$G_{ m SM}$	G_{2231}	$G_{ m PS}$	SO(10)
G_A	$({f 8},{f 1},0)$	(1, 1, 8, 0)	(1, 1, 15)	45
U_1	(3, 1, +2/3)	(1, 1, 3, +4/3)		
U_1^c	$(\overline{\bf 3}, {\bf 1}, -2/3)$	$(1, 1, \overline{3}, -4/3)$		
B_{B-L}	(1, 1, 0)	$({f 1},{f 1},{f 1},0)$		
W_{La}	(1, 3, 0)	$({f 3},{f 1},{f 1},0)$	$({f 3},{f 1},{f 1})$	
W_R^+	(1, 1, +1)	$({f 1},{f 3},{f 1},0)$	(1, 3, 1)	
W_R^0	(1, 1, 0)			
W_R^-	(1, 1, -1)			
V_2^c	(3, 2, -5/6)	(2 , 2 , 3 , -2/3)	(2, 2, 6)	
$ ilde{V}^c_2$	(3, 2, +1/6)			
V_2	$(\overline{\bf 3}, {\bf 2}, +5/6)$	$(2, 2, \overline{3}, +2/3)$		
$ ilde{V}_2$	$(\bar{3}, 2, -1/6)$			

(Note) U_1 is the G_{PS} leptoquark gauge boson; V_2 is the SU(5) leptoquark gauge boson X, Y; \tilde{V}_2 is the flipped SU(5) leptoquark gauge boson X', Y'. (See, e.g., [10, I.Dorsner et al.'16].)

Proton decay via gauge bosons

The leptoquark gauge boson $V_2^{(\prime)}$ leads to proton decay such as $p \to e^+ \pi^0$. The proton lifetime is roughly estimated as

$$\tau \simeq \frac{M_U^4}{\alpha_U^2 m_p^5}.$$

Current constraint from super-Kamiokande $\tau(p \rightarrow e^+\pi^0) > 2.4 \times 10^{34}$ years at 90% CL [11, Super-Kamiokande Collaboration'20].

The "GUT scale" $M_U > (4.3 - 4.8) \times 10^{15} \text{ GeV}$ for $40 \leq \alpha_U^{-1} \leq 50$.

(GUT scale \simeq gauge coupling unification scale)

RG flow of gauge coupling constants [12, H.Georgi et al'74]

Gauge coupling unification seems to require additional particles.

Neutrino mass

"Weinberg operator" (related with Neutrino mass) [13, S.Weinberg'79]: $\mathcal{O}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L}_{Li}\tilde{\phi}\right) \left(\tilde{\phi}^T L_{Lj}^C\right) + \text{h.c.}$

Neutrino masses and new physics (NP) scale (rough estimation):

$$(M_{\nu})_{ij} = Z^{\nu}_{ij} \frac{v^2}{\Lambda_{\rm NP}} \quad \Rightarrow \quad \Lambda_{\rm NP} \simeq Z^{\nu} \frac{v^2}{M_{\nu}} \lesssim O(10^{14}) \,{\rm GeV}$$

for $Z^{\nu} \leq O(1)$, $v \simeq O(10^2)$ GeV, and $(M_{\nu})^{\text{largest}} \simeq O(0.1)$ eV. [14, 15, Super-Kamiokande'98;PDG'20;...]

Observed neutrino masses seem to suggest that one of NP scales is located below "the GUT scale".

Summary for implication from GUT and neutrino

- Candidate for 4D GUT gauge group:
- Proton decay via leptoquark gauge bosons:
- Neutrino masses

• Gauge coupling unification

Summary for implication from GUT and neutrino

- Candidate for 4D GUT gauge group: $SU(n)(n \ge 5), SO(4k+2)(k \ge 2), \text{ and } E_6.$
- Proton decay via leptoquark gauge bosons: \Rightarrow GUT scale $M_U \gtrsim O(10^{15})$ GeV.
- Neutrino masses

 \Rightarrow a NP scale $\Lambda_{\rm NP} \lesssim O(10^{14}) \,{\rm GeV}.$

• Gauge coupling unification \Rightarrow New particles below M_U

Dark matter

The existence of dark matter (DM) is supported from various cosmological observations such as spiral galaxies, gravitational lensing, cosmic microwave background, and collision of bullet cluster

[16–20, Corbelli,Salucci'00;Sofue,Rubin'00;Massery et al'10;Planck 2018;Randall et al'07;...].

There are a lot of DM candidates such as WIMP(Weakly Interacting Massive Particle), FIMP(Feebly ...), SIMP(Strongly ...), axion, etc.

Usually, DM direct detection experiments [21,22, e.g.,XENON1T'18;PandaX-4T'21] lead to strong constrains for DM mass and cross section.

In the talk, we consider a pseudo-Nambu-Goldstone boson (pNGB) as a WIMP-type DM candidate [23, C.Gross,O.Lebedev,T.Toma'17].

Dark matter: pseudo-Nambu-Goldstone boson

Ref. [23, C.Gross,O.Lebedev,T.Toma'17] proposed a simple pNGB DM model that contains an additional complex scalar field $S \sim s + i\chi$ with softly broken global $U(1)_S$ symmetry.

The annihilation cross sections of the pNGB DMs to SM fermions are not so weak, while the scattering cross sections of the pNGB DMs and SM fermions are strongly suppressed. So, WIMP direct detection experiments do not lead to severe constraints.

Refs. [24, 25, Y.Abe,T.Toma,K.Tsumura'20;N.Okada,D.Raut,Q.Shafi'20] proposed a pNGB DM model based on a gauged $U(1)_{B-L}$ symmetry to avoid introducing the global symmetry $U(1)_S$.

Table of Content

1. Introduction (13 pages)

Grand gauge group, Gauge coupling unification Proton decay, Neutrino mass, Dark matter Unification scale, Neutrino mass scale, ...

- 2. An SO(10) pNGB DM Model (9 pages)
- 3. Summary (1 page)

SO(10) pNGB DM model [1, Y.Abe,T.Toma,K.Tsumura,N.Y.'21]

- SM quarks and leptons are unified into SO(10) **16** fermion.
- SM Higgs H is mainly contained in SO(10) **10** scalar.
- pNGB scalar DM $\chi(\in S)$ is mainly contained in SO(10) **16** scalar.
- Two additional scalars in **210** and $\overline{126}$ of SO(10) are responsible for breaking $SO(10) \rightarrow G_{PS}$ and further to G_{SM} .
- There are three scales: unification, intermediate, and electroweak scales, denoted as M_U , M_I , and $M_{\rm EW}$.

(The gauged $U(1)_{B-L}$ pNGB DM model is realized as a low-energy model, whose parameter space is limited by GUT constraints.)

SO(10) pNGB DM model [1, Y.Abe,T.Toma,K.Tsumura,N.Y.'21]

Matter content in the SO(10) pNGB DM model

	A_{μ}	$\Psi_{{f 16}}^{(a=1,2,3)}$	Φ ₁₀	Φ_{16}	$\Phi_{\overline{126}}$	Φ ₂₁₀
SO(10)	45	16	10	16	$\overline{126}$	210
$SL(2,\mathbb{C})$	(1/2, 1/2)	(1/2, 0)	(0, 0)	(0,0)	(0, 0)	(0,0)
	Gauge bosons	SM fermions	SM Higgs	pNGB DM	$U(1)_{B-L}$	SO(10)
			H	S	Φ	

Symmetry breaking pattern

$$SO(10) \xrightarrow{\langle \Phi_{210} \rangle = v_{210} \simeq M_U \neq 0} G_{PS} (\supset G_{SM} \times U(1)_{B-L}$$
$$\xrightarrow{\langle \Phi_{\overline{126}} \rangle = v_{\Phi} \simeq M_I \neq 0} G_{SM}$$
$$\xrightarrow{\langle \Phi_{10} \rangle = v \simeq M_{EW} \neq 0} SU(3)_C \times U(1)_{EM}.$$

(Note: To change breaking pattern, we need to introduce a different GUT breaking scalar field.)

The RGE for $\alpha_i(\mu) := g_i^2(\mu)/4\pi$ at 1-loop level [2, 3, e.g., R.Slansky'81]

$$\frac{d}{d\log(\mu)}\alpha_i^{-1}(\mu) = -\frac{b_i}{2\pi}, \quad b_i = -\frac{11}{3}\sum_{\text{Vector}} T(R_V) + \frac{2}{3}\sum_{\text{Weyl}} T(R_F) + \frac{1}{6}\sum_{\text{Real}} T(R_S).$$

Matching conditions at $\mu = M_I, M_U$ [26, e.g., R.N.Mohapatra'02]

Exploration of Particle Physics and Cosmology with Neutrinos Workshop 2022 @ Chiba

SM gauge coupling constants at $\mu = M_Z$ and matching conditions at $\mu = M_I, M_U$

$$\Rightarrow \begin{cases} M_I = (1.261 \pm 0.242) \times 10^{11} \,\text{GeV}, & M_U = (2.057 \pm 0.688) \times 10^{16} \,\text{GeV}, \\ g_{B-L}(M_I) = 0.3843 \pm 0.0009, & \alpha_U^{-1} = 45.92 \pm 0.50, & \dots \end{cases}$$

 $U(1)_{B-L}$ is a part of SO(10), so g_{B-L} is fixed by matching conditions.

Proton decay

Proton decay $p \rightarrow e^+ \pi^0$ via leptoquark vector and scalar mediation:

From Figure 1 in Ref. [10, I.Dorsner et al.'16]

Proton lifetime $\tau(p \to \{V_{LQ}, S_{LQ}\} \to e^+\pi^0)$ is roughly $\tau \simeq \frac{m_{LQ}^4}{(xw)^2 m_p^5} \text{ or } \frac{m_{LQ}^4}{|y|^2 |z|^2 m_p^5}.$

Proton decay via leptoquark vector & scalar bosons Proton lifetime $\tau(p \rightarrow \{V_{LQ}\} \rightarrow e^+\pi^0)$ in the model is roughly

$$au \simeq rac{m_{
m LQ}^4}{(xw)^2 m_p^5} \simeq rac{M_U^4}{lpha_U^2 m_p^5} \simeq 1.1 imes 10^{37} \, {
m years}$$

Current constraint from super-Kamiokande $\tau(p \rightarrow e^+\pi^0) > 2.4 \times 10^{34}$ years at 90% CL [11, Super-Kamiokande Collaboration'20].

For the scalar sector, there are three lepto-quark scalars denoted as S_1 in Ref. [10, I.Dorsner et al.'16], which belong to $(\mathbf{3}, \mathbf{1}, 1/3)$ under $G_{\rm SM}$. Under our assumption, their contribution is much smaller than the current experimental bound. Constraint for Yukawa coupling constants are $|y_{10}^{(11)}|, |y_{126}^{(11)}| \leq O(1)$.

Neutrino mass

The right-handed neutrino masses comes from the Yukawa coupling terms $y_{126}^{(ab)} \Psi_{16}^{(a)} \Psi_{16}^{(b)} \Phi_{\overline{126}}$.

The right-handed neutrino masses are given by $M_N^{(ab)} = y_{\overline{126}}^{(ab)} v_{\phi}$, where $\langle \Phi \rangle = v_{\phi} = M_I \simeq 10^{11} \,\text{GeV}$. For $10^{-5} \lesssim y_{\overline{126}}^{(ab)} \lesssim 1$, $10^6 \,\text{GeV} \lesssim M_N^{(ab)} \lesssim 10^{11} \,\text{GeV}$.

From the Type-I see-saw mechanism, a light neutrino mass is roughly $m_{\nu}^{(aa)} \simeq |y_{10}^{(aa)}v|^2/M_N^{(aa)}$ (ignoring the off-diagonal part of $M_N^{(ab)}$). For $|y_{126}^{(11)}| \simeq |y_{10}^{(11)}| \simeq 10^{-5}$ and $v \simeq 10^2 \,\text{GeV}$, $m_{\nu}^{(11)} \simeq 10^{-3} \,\text{eV}$

The proton decay constraints only a part of the Yukawa coupling constants $y_{126}^{(ab)}$, so it is expected that the observed neutrino masses can be reproduced.

DM decay

DM lifetime: $\tau_{\rm DM} \gtrsim 10^{17}$ sec (the age of the universe)

Cosmic ray observations give stronger limits: $\tau_{\rm DM} \gtrsim 10^{27}$ sec. [27, Baring et al'16].

If 3-body decays $\chi \to f\bar{f}h_i, f\bar{f}Z$ are allowed $(m_\chi \gtrsim m_{h_i}, m_Z)$, the VEV of Φ must be $v_\phi \gtrsim 10^{13} \text{ GeV}$ to satisfy the gamma-ray observations [24, 25, Y.Abe,T.Toma,K.Tsumura'20;N.Okada,D.Raut,Q.Shafi'20] (In the model, $v_\phi \simeq 10^{11} \text{ GeV}$).

We consider $m_\chi \lesssim 100 \,\text{GeV}$ to forbid the three body decays kinetically. In the case, the following four body decay modes are dominant.

DM decay: summary plots 10^{1} 10^{1} Unitarity Higgs decay Higgs decay 10^{0} 10^{0} PLANCK 10^{-1} 10^{-1} v/v_s v/v_s 10^{-2} 10^{-2} DM decay DM decay 10^{-3} 10^{-3} $\sin\theta = 0.05$ = 0.05 $\sin \theta$ $m_{h_2} = 130 \text{ GeV}$ = 70 GeV m_{h} 10^{-4} 10^{-4} 10^{2} 2020 10^{2} $m_{\chi} \; [\text{GeV}]$ $m_{\chi} \, [\text{GeV}]$

Red line: reproducing the observed relic abundance of DM $\Omega_{\chi}h^2 \simeq 0.12$ [19, Planck'20]. Purple region: excluded by the Higgs invisible decay [28, 29, CMS, ATLAS'19]. Gray region: excluded by the perturbative unitarity bound $\lambda_S < 8\pi/3$ [30, C.Y.Chen et al'15]. Green and Orange region: excluded by the gamma-ray observations for DM annihilation [31, Fermi-LAT, DES'17] and four body decays [27, M.G.Baring et al'16], respectively.

In the SO(10) pNGB DM model, from GUT constraints and etc., we find

the pNGB can be a DM candidate when the DM mass m_{χ} is slightly below half of the second Higgs mass m_{h_2} : $m_{\chi} \simeq m_{h_2}/2$.

Summary

We proposed an SO(10) pNGB DM model in the framework of an SO(10) GUT. SO(10) is broken to $G_{\rm PS}$ at $\mu = M_U$, and further to $G_{\rm SM}$ at $\mu = M_I$.

The SO(10) pNGB DM model

- Gauge coupling unification is realized because of the existence of an intermediate scale $M_I \simeq 10^{11} \, {\rm GeV}$.
- Constraint from proton decay is satisfied due to $M_U \gtrsim 10^{16} \,\mathrm{GeV}$.
- pNGB can be a DM candidate when the DM mass m_χ is slightly below half of the second Higgs mass.

$SO(10)\ {\rm pNGB}\ {\rm DM}\ {\rm model}$

Matter content in the SO(10) pNGB DM model

	Ψ_{16}						Φ_{10}	Φ_{16}	$\Phi_{\overline{126}}$
SO(10)			1	6			10	16	$\overline{126}$
$SL(2,\mathbb{C})$			(1/2)	2, 0)			(0, 0)	(0,0)	(0,0)
	$\psi_{(2,2)}$	1,4)		$\psi_{(1)}$	$,2,\overline{4})$		$\phi_{(2,2,1)}$	$\phi_{(1,2,\overline{4})}$	$\phi'_{(1,3,\overline{10})}$
$G_{ m PS}$	(2, 1	(., 4)		(1, 2	$(2, \overline{4})$		(2, 2, 1)	$({f 1},{f 2},{f \overline 4})$	$(1,3,\overline{10})$
	Q_L	L	u_R^c	d_R^c	e_R^c	$ u_R^c $	Н	S	Φ
$SU(3)_c$	3	1	$\bar{3}$	$\bar{3}$	1	1	1	1	1
$SU(2)_L$	2	2	1	1	1	1	2	1	1
$U(1)_Y$	$+\frac{1}{6}$	$-\frac{1}{2}$	$-\frac{2}{3}$ $+\frac{1}{3}$ $+1$ 0		$+\frac{1}{2}$	0	0		
$U(1)_{B-L}$	$+\frac{1}{3}$	-1	$-\frac{1}{3}$	$-\frac{1}{3}$	+1	+1	0	+1	+2

Gauge coupling unification: other cases

Group G_I	Scalars at $\mu=M_I$	b_j	$\frac{\log_{10}(M/1 [\text{GeV}])}{M_I M_U}$	α_U^{-1}
G_{PS}	$\begin{array}{c}({\bf 1},{\bf 2},{\bf 2})_{{\bf 10}}\\(\overline{\bf 4},{\bf 1},{\bf 2})_{{\bf 16}}\\(\overline{\bf 10},{\bf 1},{\bf 3})\overline{{\bf 126}}\end{array}$	$\begin{pmatrix} b_{4C} \\ b'_{2L} \\ b_{2R} \end{pmatrix} = \begin{pmatrix} -\frac{22}{3} \\ -3 \\ +\frac{13}{3} \end{pmatrix}$	11.10 ± 0.08 16.31 ± 0.03	0.15 45.92 ± 0.50
$G_{\mathrm{PS}} imes D$	$(1,2,2)_{10} \\ (4,2,1)_{16} \\ (\overline{4},1,2)_{16} \\ (\overline{10},1,3)_{\overline{126}} \\ (10,3,1)_{\overline{126}}$	$\begin{pmatrix} b_{4C} \\ b'_{2L} \\ b_{2R} \end{pmatrix} = \begin{pmatrix} -4 \\ +\frac{13}{3} \\ +\frac{13}{3} \end{pmatrix}$	13.71 ± 0.03 15.22 ± 0.03	0.04 40.82 ± 0.13
$G_{ m LR}$	$(1, 2, 2, 0)_{10} \\ (1, 1, 2, 1)_{16} \\ (1, 1, 3, 2)_{\mathbf{\overline{126}}}$	$\begin{pmatrix} b'_{3C} \\ b'_{2L} \\ b_{2R} \\ b_{B-L} \end{pmatrix} = \begin{pmatrix} -7 \\ -3 \\ -\frac{13}{6} \\ +\frac{23}{4} \end{pmatrix}$	8.57 ± 0.06 16.64 ± 0.06	0.13 46.13 ± 0.41
$G_{ m LR} imes D$	$(1, 2, 2, 0)_{10} \\ (1, 1, 2, 1)_{16} \\ (1, 2, 1, 1)_{16} \\ (1, 1, 3, 2)_{\overline{126}} \\ (1, 3, 1, -2)_{\overline{126}}$	$\begin{pmatrix} b'_{3C} \\ b'_{2L} \\ b_{2R} \\ b_{B-L} \end{pmatrix} = \begin{pmatrix} -7 \\ -\frac{13}{6} \\ -\frac{13}{6} \\ +\frac{15}{2} \end{pmatrix}$	10.11 ± 0.04 15.57 ± 0.04	0.09

References

- Y. Abe, T. Toma, K. Tsumura, and N. Yamatsu, "Pseudo-Nambu-Goldstone Dark Matter Model Inspired by Grand Unification," Phys. Rev. D 104 (2021) 035011, arXiv:2104.13523 [hep-ph].
- [2] R. Slansky, "Group Theory for Unified Model Building," Phys. Rept. 79 (1981) 1–128.
- [3] N. Yamatsu, "Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building," arXiv:1511.08771 [hep-ph].
- [4] H. Georgi and S. L. Glashow, "Unity of All Elementary Particle Forces," Phys. Rev. Lett. 32 (1974) 438–441.
- [5] K. Inoue, A. Kakuto, and Y. Nakano, "Unification of the Lepton-Quark World by the Gauge Group SU(6)," Prog. Theor. Phys. 58 (1977) 630.
- [6] H. Fritzsch and P. Minkowski, "Unified Interactions of Leptons and Hadrons," Ann. Phys. 93 (1975) 193–266.
- [7] F. Gursey, P. Ramond, and P. Sikivie, "A Universal Gauge Theory Model Based on E₆," Phys. Lett. B60 (1976) 177.

- [8] M. Gell-Mann, P. Ramond, and R. Slansky, "Color Embeddings, Charge Assignments, and Proton Stability in Unified Gauge Theories," Rev.Mod.Phys. **50** (1978) 721.
- [9] J. C. Pati, A. Salam, and J. Strathdee, "Probings Through Proton Decay and $n\bar{n}$ Oscillations," Nucl. Phys. B **185** (1981) 445–472.
- [10] I. Doršner, S. Fajfer, A. Greljo, J. Kamenik, and N. Košnik, "Physics of Leptoquarks in Precision Experiments and at Particle Colliders," Phys. Rept. 641 (2016) 1–68, arXiv:1603.04993 [hep-ph].
- [11] Super-Kamiokande Collaboration, A. Takenaka et al., "Search for Proton Decay via $p \rightarrow e^+ \pi^0$ and $p \rightarrow \mu^+ \pi^0$ with an Enlarged Fiducial Volume in Super-Kamiokande I-IV," Phys. Rev. D 102 (2020) 112011, arXiv:2010.16098 [hep-ex].
- [12] H. Georgi, H. R. Quinn, and S. Weinberg, "Hierarchy of Interactions in Unified Gauge Theories," Phys. Rev. Lett. 33 (1974) 451–454.
- [13] S. Weinberg, "Baryon and Lepton Nonconserving Processes," Phys. Rev. Lett. 43 (1979) 1566–1570.
- [14] Super-Kamiokande Collaboration, Y. Fukuda et al., "Evidence for oscillation of atmospheric neutrinos," Phys. Rev. Lett. 81 (1998) 1562–1567, arXiv:hep-ex/9807003.

- [15] Particle Data Group Collaboration, P. A. Zyla et al., "Review of Particle Physics," PTEP 2020 (2020) 083C01.
- [16] E. Corbelli and P. Salucci, "The Extended Rotation Curve and the Dark Matter Halo of M33," Mon. Not. Roy. Astron. Soc. **311** (2000) 441–447, arXiv:astro-ph/9909252.
- [17] Y. Sofue and V. Rubin, "Rotation Curves of Spiral Galaxies," Ann. Rev. Astron. Astrophys. 39 (2001) 137–174, arXiv:astro-ph/0010594.
- [18] R. Massey, T. Kitching, and J. Richard, "The Dark Matter of Gravitational Lensing," Rept. Prog. Phys. 73 (2010) 086901, arXiv:1001.1739 [astro-ph.CO].
- [19] Planck Collaboration, N. Aghanim et al., "Planck 2018 Results. VI. Cosmological Parameters," Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].
- [20] S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez, and M. Bradac, "Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56," Astrophys. J. 679 (2008) 1173–1180, arXiv:0704.0261 [astro-ph].
- [21] XENON Collaboration, E. Aprile et al., "Dark Matter Search Results from a One Ton-Year Exposure of XENON1T," Phys. Rev. Lett. 121 (2018) 111302, arXiv:1805.12562 [astro-ph.CO].

- [22] PandaX-4T Collaboration, Y. Meng et al., "Dark Matter Search Results from the PandaX-4T Commissioning Run," Phys. Rev. Lett. 127 (2021) 261802, arXiv:2107.13438 [hep-ex].
- [23] C. Gross, O. Lebedev, and T. Toma, "Cancellation Mechanism for Dark-Matter-Nucleon Interaction," Phys. Rev. Lett. 119 (2017) 191801, arXiv:1708.02253 [hep-ph].
- [24] Y. Abe, T. Toma, and K. Tsumura, "Pseudo-Nambu-Goldstone Dark Matter from Gauged $U(1)_{B-L}$ Symmetry," JHEP **05** (2020) 057, arXiv:2001.03954 [hep-ph].
- [25] N. Okada, D. Raut, and Q. Shafi, "Pseudo-Goldstone Dark Matter in a Gauged B L Extended Standard Model," Phys. Rev. D 103 (2021) 055024, arXiv:2001.05910 [hep-ph].
- [26] R. N. Mohapatra, Unification and Supersymmetry -The Frontiers of Quarks-Lepton Physics-. Springer, 2002.
- [27] M. G. Baring, T. Ghosh, F. S. Queiroz, and K. Sinha, "New Limits on the Dark Matter Lifetime from Dwarf Spheroidal Galaxies Using Fermi-LAT," Phys. Rev. D 93 (2016) 103009, arXiv:1510.00389 [hep-ph].
- [28] CMS Collaboration, A. M. Sirunyan et al., "Search for Invisible Decays of a Higgs Boson

Produced Through Vector Boson Fusion in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV," Phys. Lett. B **793** (2019) 520–551, arXiv:1809.05937 [hep-ex].

- [29] ATLAS Collaboration, M. Aaboud et al., "Combination of Searches for invisible Higgs Boson Decays with the ATLAS Experiment," Phys. Rev. Lett. 122 (2019) 231801, arXiv:1904.05105 [hep-ex].
- [30] C.-Y. Chen, S. Dawson, and I. M. Lewis, "Exploring Resonant Di-Higgs Boson Production in the Higgs Singlet Model," Phys. Rev. D **91** (2015) 035015, arXiv:1410.5488 [hep-ph].
- [31] Fermi-LAT, DES Collaboration, A. Albert et al., "Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT," Astrophys. J. 834 (2017) 110, arXiv:1611.03184 [astro-ph.HE].