Physics beyond the Standard Model with IceCube

Ann anna

Anna Pollmann

anna@pollmann.co

IceCube

South Pole

IceCube Laboratory

Working principle

- Particles interact with the deep clear ice
- Emitted light is detected by sensors

Fully operational since 2011

Geometry

- volume 1 km³ 1450m –
- vertical spacing 17 m
- horizontal spacing 125 m

Inice Array 86 strings, each with 60 optical sensors

ove	erie	s
eac lect	dout tron	ics

Neutrino signatures

Muon neutrinos: track-like events $\nu_{\mu} + N \rightarrow \mu + X$

angular resolution $\sim 0.5^{\circ}$ energy resolution ~ 25%

Electron neutrinos: isolated cascades $\nu_e + N \rightarrow e + X$

 $\nu_x + N \rightarrow \nu_x + X$

angular resolution $\sim 10^{\circ}$ energy resolution ~ 15% Tau neutrinos: "double bang"

 $\nu_{\tau} + N \rightarrow \tau + X$

~ 2 expected events in 6 years

Beyond standard model searches in IceCube

Advantages to use v-detectors for exotic physics

- large detector volume
- for indirect detection: high statistics

Direct detection

- IceCube detects what
 - reaches the detector
 - induces light production in ice

magnetic monopoles

Q-balls / nuclearites

... and many more (not even thought off)

for direct detection: few conditions on particle properties

"Standard"

- DM from galactic halo gravitationally bound in potential of body
- weak scattering off nuclei in Sun decelerates DM towards center $\rightarrow \sigma_{X-p}$
- DM self-annihilates at center with SM particle emission → different spectra (only of neutrinos)
- neutrino rate & energy at detector depends on
 - DM mass & annihilation cross section
 - DM halo density spectrum

Secluded DM

 annihilation via long-lived mediator decaying into SM particles outside sun

Analysis strategy:

- use low energy sub-detector DeepCore
- use standard IceCube as veto
- distinguish muon tracks and cascade-like signatures
- reconstruct direction (angular resolution 5-35°)
- unbinned LLH

arXiv:2111.09970 Accepted by Phys. Rev. D

Analysis strategy:

- use low energy sub-detector DeepCore
- use standard IceCube as veto
- distinguish muon tracks and cascade-like signatures
- reconstruct direction (angular resolution 5-35°)
- unbinned LLH

arXiv:2111.09970 Accepted by Phys. Rev. D

Secluded Dark Matter

- mediator decays into v outside sun, no signal attenuation
- signal at higher energies

Analysis strategy:

- consider muon tracks "from below"
- unbinned LLH

arXiv:2107.10778

Magnetic monopoles

1864 $\nabla \cdot \mathbf{D} = 4\pi \rho_{e}$ $\nabla \cdot \boldsymbol{B} = 4\pi \rho_m$ $\nabla x \mathbf{E} - c \cdot \mathbf{\dot{B}} = 4\pi c' \mathbf{j}_m$ $\nabla x \mathbf{H} - c \cdot \mathbf{\dot{D}} = 4\pi c' \mathbf{j}_e$ James Clerk Maxwell

 $e = \sqrt{hc\alpha}$ Result: Dependence on a magnetic charge g

Detection of Magnetic Monopoles

predicted by many BSM theories

- isolated magnetic charge (~n x 68·e)
- massive (up to 10¹⁹ GeV)
- slow or relativistic
- low flux possible
- highly ionising

Event signatures of bright tracks

μ -neutrino 2.6 ± 0.3 PeV

µ-bundle from cosmic rays

Astrophys.J. 833 (2016) 1

Simulation of a monopole with 0.99 c

Bright relativistic magnetic monopoles

Event signature: similar to astrophysical muon neutrinos

Analysis:

- step 1: copy standard astro-ν search
- step 2: work out distinct features of monopoles:
 - zenith distribution
 - tracks
 - homogeneous brightness
 - speed

Bright relativistic magnetic monopoles

Event signature: similar to astrophysical muon neutrinos

Analysis:

- step 1: copy standard astro-ν search
- step 2: work out distinct features of monopoles:
 - zenith distribution
 - tracks
 - homogeneous brightness
 - speed

Bright relativistic magnetic monopoles

Event signature: similar to astrophysical muon neutrinos

Analysis:

- step 1: copy standard astro-v search
- step 2: work out distinct features of monopoles:
 - zenith distribution
 - tracks
 - homogeneous brightness

 10^{-20} speed

 Sr^{-1}

 \mathbf{S}^{-1}

 \sim

CIM

Detection of Magnetic Monopoles

predicted by many BSM theories

- isolated magnetic charge (~n x 68·e)
- massive (up to 10¹⁹ GeV)
- slow or relativistic
- low flux possible
- highly ionising

Luminescence of water and ice

- few previous measurements
- conducted laboratory and in-situ measurements
- measured properties are sufficient for use at neutrino telescopes

Temperature / °C

In Situ measurement @ IceCube 2019

Luminescence of water and ice

- few previous measurements
- conducted laboratory and in-situ measurements
- measured properties are sufficient for use at neutrino telescopes

Temperature / °C

nents

Low relativistic magnetic monopoles Event signature: similar to atmospheric muon neutrinos or coincident muons IceCube 2014 DC 1y ANTARES 2021 9y **□** IceCube 8y Sensitivity from air showers BAIKAL 2003 5y \bullet IceCube (40 strings) 2015 IceCube 8y MACRO 2002 \leftarrow IceCube 2015 1y IceCube 7y ANTARES 2017 5y 10⁻¹⁵ Parker Bound Analysis: Sr^{-1} 10^{-16} work out distinct features of monopoles: \mathbf{S}^{-1} 10^{-17} $\sigma_{\rm cat}\beta\!\approx\!1.8\cdot\!10^{-28}$ - tracks \mathbf{C} CIM 10^{-18} homogeneous brightness Φ_{90} / 10⁻¹⁹ speed model background with ~boot IceCube & ANTARES Preliminary 10⁻²⁰ -2 -3 0 strapping algorithm ICRC (2021) 534 $\log_{10}eta~\gamma$ ICRC (2021) 1127 Phys. Rev. Lett. 128, 051101 (2022)

(Arxiv: 109.13719)

Outlook

- ongoing search for heavy long lived (anomalously) charged particles
- searching for new detection mechanisms or particles
 - Q-balls → luminescence
 - nuclearites \rightarrow thermal shock wave (experiments needed)
- detector upgrades new detector devices
 - open new parameter spaces, esp. at high energies
 - new detector devices

