(A01) Recent status of SK/SK-Gd

新学術領域「ニュートリノで拓く素粒子と宇宙」 Exploration of Particle Physics and Cosmology with Neutrino March 7th, 2022

Kamioka observatory, Institute for Cosmic Ray Research (ICRR),

the University of Tokyo. Yuuki Nakano (中野 佑樹)

E-mail: ynakano@km.icrr.u-tokyo.ac.jp

自然ニュートリノ観測と陽子崩壊探索を通して探る新たな素粒子物理 18H05536

Contents

- Super-Kamiokande detector (SK-Gd project)
- Supernova relic neutrinos
- Results from pure water
- Status after Gd-loading
- Future prospect
- Summary

Super-Kamiokande (SK)

Detector

- Located at Kamioka Japan.
- 50 kton of ultra pure water tank.
 - 20-inch PMTs, 11,129 for ID.
 - 22.5 kton for analysis fiducial volume.
- Water Cherenkov light technique.
- \rightarrow Energy, direction, particle identification.

Physics target

- Atmospheric neutrino
- Astrophysical neutrino (solar, supernova)
- Proton decay
- Long base line neutrino (T2K)

History of the SK experiment

p. 4

Operation of the detector

- More than 25 years of operation since 1996.
- Refurbishment work toward SK-Gd in 2018.
- SK-V started on 2019, and SK-Gd has started since 2020.

 \rightarrow This talk.

Supernova relic neutrino and Results from SK (pure water)

Supernova relic neutrinos (SRN)

Supernova (SN) burst neutrinos and relic neutrinos

- Neutrino emissions before the SN explosion (no detection since 1987A).
- A few SN explosions happen every second, so far O(10¹⁸) of SN bursts in the universe.
- \rightarrow Neutrinos produced from all past SN bursts and diffused in the universe.

What we can learn

- Galaxy evolution
 - → Neutrino energy spectrum contains information about star/black hole formation rate, initial mass function, metallicity.

$$\frac{dF_{\nu}}{dE_{\nu}} = c \int_0^{z_{\text{max}}} R_{\text{SN}}(z) \frac{dN_{\nu}(E_{\nu}')}{dE_{\nu}'} (1+z) \frac{dt}{dz} dz$$

- Mechanism of supernova burst.
- Neutrino oscillation with matter effect in dense medium.

Now

5 billion vears ado

Spectrum shape depends on red shift z

p. 6

Neutrinos from past SNe

Signal of SRN in the SK detector

p. 7

 $\overline{\nu}_e$

Detection possibility

- Signal window between reactor neutrinos and atmospheric neutrinos.
- Large cross section of inverse double beta decay ($\overline{m{
 u}}_e + p
 ightarrow e^+ + n$)
 - \rightarrow Primary signal of positron and delayed signal of neutron (γ -ray, 2.2 MeV).

- Special trigger to record all hits in 500 μs after a primary signal.

Latest results from SK-IV 2970 days (Pure water)

Model independent limit

Flux limit

- Upper limit : 4.2 $\overline{\nu}_e$ cm⁻² s⁻¹ (90% C.L.), >15 MeV.
- SK's experimental data reached some of the optimistic model predictions.
- More details can be found in Phys. Rev. D 104, 122002 (2021)

Toward observation

- Add Gadolinium to significantly improve the detection efficiency of neutron.

Why Gadolinium

Merit

- (1) Large cross section to neutron.
 - \rightarrow 90% (50%) of Gd-n capture efficiency
 - when 0.1% (0.01%) of Gd concentration.
- (2) Emission of 8 MeV γ -rays instead of 2.2 MeV γ -ray. ~100 hits ~10 hits
- Enhance detection capability of neutrons from IBD.

First Gd-loading in 2020

Replacement of water

- 13.2 tons of Gd2(SO4)3.8H2O (5 tons of Gd).
 - \rightarrow Screened its radioactive impurities before loading.
- Suck pure water from top.
- Supply cold Gd water from the bottom.
 - \rightarrow from July 14th to august 17th 2020.

Gd sulfate powder

D.

Neutron induced by cosmic ray muons

Neutrons after muons

Cosmic ray muons often break Oxygen nuclei. → Produce neutrons (spallation products)

- Tagging rate 15 event/day, when pure water.
- After loading Gd \rightarrow 6000 event/day.
- Gd-n capture signals were clearly observed.

p. 13 Uniformity of Gd concentration 100 ppm = 0.01%

- Monitoring the Gd concentration
- (1) Atomic Absorption Spectrometer by directly sampling Gd-loaded water.
 - \rightarrow 114 \pm 2 ppm.
- (2) Am/Be+BGO calibration data in various height in the water tank.
 - \rightarrow Capture time of 115 ± 1 µs corresponding to 111 ± 2 ppm.
- Consistent with the expectation throughout the detector volume.

²⁴¹Am → ²³⁷Np +
$$\alpha$$

⁹Be + α → ¹³C* + n (2-6 MeV)

$$^{13}C^* \rightarrow ^{12}C + \gamma (4.43 \text{ MeV})$$

8 BGO Crystals

Scintillation light as primary signal Neutron as delayed signal

Status after Gd-loading

Achievements and recent progress

- Developed the screening method of Gd sulfate powder.
- Established the Gd loading method.
- Clear signals of Gd-n capture.
- Demonstrate the uniformity of the Gd concentration in the tank.
- Evaluate the detector response and performance with calibration devices.
- Analyze the real data including Gd-n capture signals.
- S. Miki, Neutrino event reconstruction with neutron detection in SK-Gd
- Y. Maekawa, 光電子増倍管ノイズ解析によるSK-Gdの中性子識別効率向上 Short talks by students

Next step

- More Gd as the second Gd-loading in 2022.

More details Nucl. Inst. Meth. A 1027, 166248 (2022)

Final goal (0.1%) 80 Next target (0.02-0.03%)

Initial loading (0.01%)

Second Gd loading in 2022

Additional Gd-loading

- Dissolving additional 26 tons of Gd2(SO4)3·8H2O in May/June 2022.

Future prospect when 0.03% of Gd

Expected sensitivity

- Two years of operation with 0.03% Gd concentration.
 - \rightarrow 8 years with pure water (~same as SK-IV).
- Background due to atmospheric neutrinos should be reduced for further sensitivity.
- Some of the models can be tested in near future.

Supernova alert on GCN

Automatic alert

- SK's automatic alert is sent to GCN.

(The Gamma-ray Coordinates Network).

- \rightarrow Within some minutes after detection of a neutrino burst.
- Pre-Sn signals from Si-burning are also feasible (<200 pc).
- \rightarrow low energy, low intensity, long-emission before its explosion.

ACTIVE		OLD INACTIVE	
Description	Notice Archive	Description	Notice Archive
<u>IPN</u>		CGRO	n/a
KONUS	table	BeppoSAX	table
INTEGRAL	GRBs table	NEAR	table
INTEGRAL	SPI-ACS table	ALEXIS	table
<u>Swift</u>	GRBs table	HETE	table
Swift	GND_ANALYSIS table	MILAGRO	table
Swift	BAT SubSubThresh table	XTE-PCA, -ASM	table
Swift	BAT Monitor table	<u>Suzaku</u>	table
AGILE	GRBs table		
AGILE	MCAL table		
Fermi	GRBs table		
Fermi	GBM Subthresh table		
<u>Fermi</u>	LAT Monitor&Trans table		
MAXI	table		
MOA	table		
SNEWS	table		
SK_SN	table		
CALET	table		
AMON	Gold&Bronze table	AMON	EHE table
AMON	HAWC table	AMON	HESE table
AMON	NU_EM table		
AMON	CASCADE table		
LIGO/Virgo	table		
Counterpart	table		
Coincidence	table		
SIMBAD-NED	n/a		

Related study by SK

Astrophys . J. 885, 2 (2019)

Summary

- Super-Kamiokande has collected rich data for more than 25 years.
 - \rightarrow Using data with pure water, its sensitivity to supernova relic neutrinos (SRN) reaches most optimistic models.
- SK-Gd project started in 2020 to aim for the first observation of SRN.
- First Gd loading was conducted in July-August 2020.
- \rightarrow 0.011% of Gd concentration and 50% of Gd-n capture efficiency.
- More Gd will be added in this year.
- \rightarrow 0.03% of Gd concentration and 75% of Gd-n capture efficiency
- Automatic alert is ready for a SN burst and pre-SN signals.

Back up