光電子増倍管ノイズ解析による SK-Gdの中性子識別効率向上

前川 雄音 Keio Univ.

2022年3月8日

スーパーカミオカンデ (Super-Kamiokande; Super-K)

2020年からSuper-Kにガドリニウム (Gd)が添加し 超新星背景ニュートリノの発見を目指す

PMTノイズ除去手法

• 中性子線源を用いたノイズ除去手法の実証

除去手法開発のためのノイズ調査

シンチレーション光の特徴を利用してノイズ低減

ガラスシンチレーション光の時間特性調査

シンチレーション光ノイズ除去

PMTノイズ除去手法

• 中性子線源を用いたノイズ除去手法の実証

SK-Gdにおける中性子識別効率評価

中性子線源により、中性子識別効率と検出器シミュレーションを実証。

中性子識別効率の計算

Back Up

Super-K の背景v探索

 \overline{v}_{e} Energy [MeV] $E_{v} = E_{rec} + 1.8 \text{ MeV}$

17

Events/2-MeV

大気ニュートリノのバックグラウンドは主に チェレンコフ角の違いを利用してカット

大気ニュートリノと似たスペクトルを持つ加速 器ニュートリノを利用してNCQE反応の統計を 増やし断面積の理解を進め、不確かさを削減

SK-Gdでは中性子捕獲性能がよくなり、捕獲 位置が良くわかり、さらに初期信号の近くで捕 獲されるようになる。

現在のSK-Gdでは濃度0.01% (捕獲効率50%)で運用中

SRNの感度はおおよそ∝√観測期間 低フラックスのモデルの場合、中性子識別効率が発見期間に大きく影響する。

シンチレーション光除去解析

シンチレーション光ノイズの特性から各PMTでノイズヒットを解析的に除去する。

光電子増倍管ノイズ解析によるSK-Gdの中性子識別効率向上

再構成時間によるカット

有効体積によるカット

スーパーカミオカンデでは、 壁に近い位置にノイズが多い →壁から2 m離れた候補を選択

24

39

m

再構成品質によるカット

ノイズや、ノイズの混入が多い候補事象は再構成がうまくいかない →再構成品質をパラメータ化してノイズを排除

中性子候補セレクション結果

候補事象数(初期信号数に対する割合)

シミュレーションを使用することで、

各セレクションのノイズ排除率を確認できる

4割減少

	Before reduction			After reduction		
候補事象選択項目	バックグラウンド(BG)	Н	Gd	バックグラウンド(BG)	Н	Gd
再構成時間	5178171(6627%)	13099(17%)	35548(45%)	3438884(4401%)	11986(15%)	35593(46%)
有効体積	3637817(4656%)	11725(15%)	35258(45%)	2145562(2746%)	10704(14%)	35289(45%)
位置再構成品質	759155(972%)	6070(7.8%)	32056(41%)	773888(990%)	7520(9.6%)	33190(42%)
方向再構成品質	662127(847%)	5763(7.4%)	31946(41%)	673493(862%)	7155(9.2%)	33058(42%)
Energy	27871(36%)	1346 (1.7%)	30381(39%)	14184(18%)	817(1.0%)	30026(38%)
線源からの距離	182(0.23%)	907 (1.2%)	29559(38%)	69(0.09%)	563 (0.72%)	29338(38%)
_ バッククラウンド(BG)の混人率						
BG		-=059%	\rightarrow	$\frac{69}{230} = 0.230$	V6 ノイ:	ズ混入率

$$\frac{BG}{BG+H+Gd} = \frac{182}{182+907+29559} = 0.59\% \rightarrow \frac{69}{69+563+29338} = 0.23\%$$
ノイズ除去前 ノイズ除去後

中性子識別効率の計算

最終中性子候補から、識別効率を計算する

28

中性子識別効率の低下を1%以内に抑えつつ、ノイズの混入率を4割程度に減らした

中性子検出の課題とSK-Gd 実験

SK-Gd 実験:2020年からSuper-Kにガドリニウム (Gd)を添加開始

解析的に検出効率を向上させることで、これまでの大統計データも活用できる。

シンチレーション識別結果

減ったノイズ量 ダークヒットの32.9%(電荷条件あり) ダークヒットの21.1%(電荷条件あり)

Previous report of scintillation noise

R12860 ch1 + Glass

• In previous report.

Detect the emissions from HK PMT glass directly and measure the time constants.

This distribution was fitted by $A_1 \exp\left(-\frac{x}{\tau_1}\right) + A_2 \exp\left(-\frac{x}{\tau_2}\right) + Gaussian + constant$

	$\tau_1/\mu s$	$\tau_2/\mu s$
Glass only	1.9 ± 0.23	13 ± 1.8
input α ray	1.7 ± 0.23	13 ± 2.2
input β ray	1.6 ± 0.30	13 ± 3.5

Super-Kイベント再構成

PMTの検出タイミング、検出分布から 粒子の**発生座標、方向、エネルギー** を再構成している

2022/3/8

光電子増倍管ノイズ解析によるSK-Gdの中性子識別効率向上