Study of Symmetry with an accelerator neutrino beamA02Intense Neutrino Beam for $(\overline{\nu})_{\mu} \rightarrow (\overline{\nu})_{e}$ study

Super-K

Workshop on "Exploration of Particle Physics and Cosmology with Neutrino"

J-PARC MR & Neutrino Beam

8 March 2022

Tsunayuki Matsubara (KEK/J-PARC) for A02 group

Long-baseline neutrino experiment

T2K experiment

- Operating since JFY2009.
- \cdot Discovery of $\,\nu_{\,\rm e}$ app. in 2013
- · Anti- ν operation since 2014

to measure the CP violating phase (δ $_{\rm CP})$

Recent results [Nature 580, 339-344 (2020)]

- Obtained strong preference of the ν_{e} appearance enhancement.
- Constraining possible δ_{CP} value, excluding region at the 3σ C.L.
- But it is not yet clear if CP symmetry is violated or not.

To accumulate more data in a shorter time, J-PARC will increase the beam power by upgrading the accelerator and beamline.

Beam power upgrade

• The beam power will be increased up to 1.3 MW as shown in the plan below with the **"faster cycle time"** and **"increased protons per pulse"**.

· Upgraded work in progress!!

This talk covers upgrades of "J-PARC Main ring" & "Neutrino beamline"

J-PARC Main ring

J-PARC Main Ring

Main ring synchrotron

- ~1.6 km circumference
- \cdot Three-fold symmetry
- · 3 (30) GeV injection (extraction)

Beam power : ~500 kW (FX)

• 2.48 sec cy ¹/₁₀₀
• ~2.6x10¹⁴ κ¹/₁₀₀

(*) the world hignest ppp in synchrotrons

Beam loss after upgrades

Beam loss reduction and better loss localization are necessary.

	Cycle [s]	Intensity [ppp]	Power [kW]	Total beam loss [kW]	Coll. Capacity [kW]
Present	2.48	2.6×10 ¹⁴	500	0.8	2.0
JFY2022	1.32	2.1×10 ¹⁴	750	1.1	3.5
Future	1.16 ×2 fas	3.3×10 ¹⁴ × ster ×1	1300 ¥ .3 ×2	6 Upper limit localization	3.5 is determined by efficiency

Reports in this talk:

(1) Beam optics for resonance compensation

(2) Evaluation/reduction of beam coupling impedance

Optics study for resonance compensation

Structure resonances cause beam loss.

Vertical phase adv. in the arc section was optimized.

The 3rd-order sextupole-like structure resonance $v_x - 2v_y = -21$ was compensated.

T. Yasui et al., Prog. Theor. Exp. Phys. 2022, 013G01 (2022).

Optics study for resonance compensation

Slide from Takaaki Y<u>asui</u>

The new optics also suppress some space charge resonances.

Long-term beam loss was reduced by suppressing the resonance $8v_y = 171$ induced by the space charge effects.

Beam survival recovered! Beam loss reduced!

Further optics study is planned to realize 1.3 MW operation.

Beam loss and instability

countermeasures.

For high-power beam realization, it is necessary to suppress the beam instability that

It is necessary not only to strengthen the

also to identify the cause and take

system to suppress the beam instability, but

The resistive-wall effect, which is the main cause of the transverse beam coupling impedance, is being evaluated by calculations, simulations, and beam study measurements.→

In order to predict the behavior of the beam, estimation of the beam coupling impedance is necessary.

Impedance measurements of the RF cavity and FX kicker, the next largest contributors, were completed during this fiscal year.

oscillation inside Δ bunch Typical example of beam instability measurement (y[mm])² 10⁴ 1st bunch 3 bunches 400 420 440 460 480 500 520 540 560 580 10^{3} $v_{y}=21.22$ slice ξ_v=-0.927 5.49×10¹³ ppp 10^{2} #316783 10 owthrate $\alpha = 136 \text{ Hz}$ 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 turns

Slide from

Aine Kobayashi

Impedance reduction of new FX septum

Slide from Aine Kobayashi

New FX septa (Eddy-current type septa) are being installed to accommodate the higher intensity and higher repetition rate of the beam.

Fabrication is in process, and measurement will be done next fiscal year.

Neutrino beamline

Overview of the J-PARC Neutrino beamline

Neutrino beamline was originally designed for 750 kW (T2K goal)

 \rightarrow Need to upgrade to accept higher beam power

Status and plan

Slide from J-PARC PAC in July 2021

Report in this talk:

Target cooling system upgrade in the current long shutdown

Neutrino production target

Mechanical features

- 90 cm long (for ~2 interaction length)
- 26 mm Φ (3 σ range of beam size with $\sigma_x = \sigma_y = 4.2$ mm)
- Cantilever structure in the magnet (for remote exchange using a manipulator)

Functional features

- Thermal shock tolerance (< 3.3x10¹⁴ proton per pulse, equivalent to 7.4MPa stress)
- Radiation damage tolerance (Swelling mitigation by T control in [400, 700]°C)
- Oxidation consumption tolerance (Oxidation mitigation by <100 ppm of O2 & <700°C of target surface T)
- Helium gas cooling (for cooling 24 kW of heat load to the target at 750 kW operation)

Concept of the target cooling system upgrade

- Current target and its cooling system in the target station are introduced.
- Then the concept of the upgrade is explained in a slide as shown here:

• "Vacuum insulated pipe" is one of key devices and newly developed.

Current status & plan

Status:

- \cdot R&D completed in ~2020 (heat insulation & low pressure drop)
- Detailed design completed in 2021. Most of components were already delivered.
- \cdot Removal and storage of the current 1st heat exchanger has been started.

Plan:

- Installation of new heat exchanger will be performed in several months.
- \cdot Schedule to be optimized together with other upgrade works in the target station

Summary

- Upgrades of the J-PARC Main ring and neutrino beamline are in progress for higher beam power up to 1.3 MW.
- Works for the MR upgrades related to the beam loss are reported.
- Works for the neutrino beamline upgrades, especially target cooling system is also reported.

Backup

Vacuum insulated pipe R&D

Confirmed low pressure drop by simulation

	Mass flow [g/s]	R _{pipe} [mmΦ]	ΔΡ [MPa] by Mike(RAL)	ΔΡ [MPa] by Matsubara	Comment
Current system	30	23.9	0.0445	0.044	Comparable w/ 0.06MPa.
Updated system (0.1→0.5 MPaG)	60	23.9	0.0509	0.051	
		30.7 🖌	0.0155	0.015	Increased diameter.

• Confirmed heat insulation performance by the prototype test and simulation

Tair

= ~200°C

Tchamber

= ~60°C

Comparison with simulation (COMSOL)

- Flow rate of 10~100 L/min \rightarrow Mass flow rate of 0.12~1.2 g/s if calculating with density of air (1 atm \cdot 200°C) is 0.72 g/l
- \cdot Simulation was performed with conditions below

- Comparable results in case of 0.1 g/s but higher than observation in 1.0 g/s
- Investigating the difference with observation
 - Flow rate correction?
 - \cdot Design of the edge of insulated region?
 - Boundary condition in a chamber?

Mid-term Plan of MR

FX: The higher repetition rate scheme : Period 2.48 s → 1.32 s for 750 kW.
(= shorter repetition period) → 1.16 s for 1.3 MW
SX: Mitigation of the residual activity for the beam power upgrade

JFY	2020	2021	2022	2023	2024	2025	2026	2027	2028
Event		Long Shut	down						
FX power [kW] SX power [kW]	515 55	- 60–70	>700 >80	800 >80	900 >80	>1000 >80	>1100 ~100	>1200 ~100	1300 ~100
Cycle time for Fast Extraction New Magnet PS	2.48s Mass Pr Installat	oduction ion/Test	1.32s	1.32s	1.32s	1.32s	<1.32s	<1.32s	1.16s
RF system upgrade 2 nd RF system upgrade									
Collimator system		Add.colli. (3.5kW)							
Injection systemKicker PS improvementFX systemSepta manufactureTest									
Beam Monitors (BPM circuits)									
SX: Diffuser/Bent crystal/VHF Local shield	+					→			5