T2K Status and Plans

Soichiro Kuribayashi Kyoto University

Neutrino oscillation

Neutrino mixing is characterized by PMNS matrix

3 mixing angles ($\theta_{23}, \theta_{13}, \theta_{12}$) and 1 CP phase δ_{CP}

Leading term of oscillation probabilities

$$P(\nu_{\mu} \rightarrow \nu_{e}) \sim \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(1.27 \frac{\Delta m_{13}^{2} [\text{eV}^{2}] L[km]}{E_{\nu} [\text{GeV}]} \right)$$

 δ_{CP} appears at higher order

Open questions: δ_{CP} , θ_{23} octant, mass ordering ...

T2K experiment

- T2K is a long baseline neutrino oscillation experiment designed to measure neutrino oscillation parameters
- . World leading of $\delta_{CP},\,\theta_{23},\,\Delta m^2_{32}$
 - -> To find the evidence of CP violation, reduction of systematics uncertainty is important

Neutrino-nucleus interaction

- One of the main sources of the systematic uncertainty in neutrino oscillation measurement
- CCQE dominates plus multi-nucleon '2p2h' and resonant CC1 π at neutrino energy of T2K
- It is difficult to understand these interaction models

Near detectors

Located 280 m downstream of beam target

- INGRID ··· Monitoring neutrino beam direction and intensity
- ND280 ··· Consist of several detectors
 - FGD ··· Active scintillator-bar targets
 - TPC ... Time projection chamber to track charged particles
 - -> Constrain neutrino interaction and neutrino flux models

Oscillation analysis

Oscillation analysis flow (frequentist way)

- First fit to near detector, and then fit to SK data (frequentist analysis)
- Bayesian analysis(joint fit with near detector and SK) is also performed and results of both approaches are consistent

Near detector fit

FGD1 v_{μ} CC0 π

Near detector fit

 Near detector fit introduce anti-correlations between flux and xsec (neutrino interaction) parameters

. Reduction of uncertainty of ν_e rate at SK from 13.0% to 4.7%

Far detector(SK) analysis

- 5 far detector samples
 - Two samples with μ -like rings (sharp) (one in ν -mode, one in $\bar{\nu}$ -mode)
 - Three samples with e-like rings (fuzzy) (Two with e-ring only in ν-mode and ν̄ -mode targeting CCOπ events, One with Michel electron from decay targeting

 $CC1\pi$ events)

 Systematic uncertainties are constrained by near detector fit

Robustness study

- Choice of the neutrino interaction model is susceptible to introducing a bias for the oscillation analysis
- To estimate the bias, we perform fitting data simulated with alternate interaction models
- No significant bias on θ_{23} Small bias seen on Δm^{2}_{32} and an additional uncertainty was added to account for this

- CP-conserving values (0, π) excluded at 90%
- There are no significant changes in any of our robustness studies (Largest $\Delta \chi^2$ changes seen would cause left (right) edge of 90% interval to move by 0.073 (0.080))

Beyond oscillation analysis 2020

- The latest analysis is being performed
 - New sample selection based on presence of proton(photon) in near detector fit
 -> Unique sensitivity to nuclear effects
 - New samples in SK fit (2 μ -like rings and 1 or 2 decay-e)
 - -> Slight better sensitivity to θ_{23} and $|\Delta m_{32}^2|$

- Updated robustness study is ongoing
- T2K-SK, T2K-No ν a joint fits are ongoing
 -> important to break degeneracies and understanding systematics correlations between experiments

New sample in SK

T2K-II

 Toward the more precise measurement especially to find evidence of CP violation in neutrino sector, increase of statistics and reduction of systematics error are needed -> T2K-II (2023 ~ 2026)

15

- T2K-II
 - Beam upgrade
 - Near Detector upgrade

ND280 upgrade

ND280 upgrade

- Super FGD fine granulated plastic scintillator detector
 - $1 \text{ cm}^3 \text{ cubes x 2 million (~ 2 ton)}$
- 2 High-Angle TPCs
- 6 Time of flight detectors
- \rightarrow Low momentum threshold
 - 4π acceptance (same as SK)
- Installation will be done by spring 2023

Impacts of ND280 upgrade on physics

- New detectors have many impacts on neutrino physics
 - Detection of low momentum proton (600 MeV/c -> 300 MeV/c)
 -> More understanding nucleus effect of neutrino interaction
 - Neutron kinematics
 - . e- γ separation -> precise measurement of ν_e cross section

etc.

Summary

- T2K is performing world-leading measurements of neutrino oscillation parameters
- CP conservation of neutrino oscillation is excluded at 90%
- The oscillation analysis including new near and far detector samples is ongoing now
- We are planning T2K-II experiment
 > Beam and ND280 upgrades are ongoing

Back up

Results of θ_{23} , Δm_{23}^2

in oscillation analysis 2020

- Slight preference for upper octant and normal ordering
- Small bias seen by the robustness studies

Results of θ_{13}

in oscillation analysis 2020

- Measure with and w/o Reactor constraint
- Both of them are consistent with reactor data

T2K preliminary

WAGASCI, NINJA

- There are various approaches to understand neutrino interaction model
 - WAGASCI-BabyMIND experiment
 - ··· water target, neutrino energy spectrum slightly different from ND280
 - NINJA experiment
 - -> See next talk in detail

WAGASCI experiment

