

The event analysis in NINJA experiment

Ayaka Kasumi (F-lab, Nagoya Univ.) on behalf of the NINJA Collaboration

新学術領域「ニュートリノで拓く素粒子と宇宙」研究会, 8th Mar. 2022

Neutrino physics on sub-multi GeV

Neutrino multi-nucleon interaction

NINJA Experiment

Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

- Precise measurement of neutrino-nucleus cross-sections in Sub-Multi GeV u_{μ}
- Electron neutrino cross-section measurement
- Sterile neutrino search

50 researchers from 10 institutions

Merits using nuclear emulsion

The nuclear emulsion has all the essential elements for low energy neutrino study.

NINJA ROADMAP

Currently, Physics Run I is underway.

Results of Detector Run (T60)

 v_{u} -Iron CC inclusive cross-section and detailed information was reported.

Physics Run (E71a)

- First measurement of v-multi nucleon interactions
- Exclusive cross-section measurement of v_{μ} -water interactions

Emulsion Shifter and Scintillation Tracker give time stamps to emulsion track in ECC to identify μ with Baby MIND.

NINJA detector (E71a)

Direction of analysis in conventional method

1()

Emulsion Shifter

H.Kawahar (Nagoya Univ.) 11

4 films are used for a wall of emulsion shifter

Operation of the Emulsion Shifter \rightarrow Stable 50.0 stages [mm] 45.0 40.0 of the 35.0 Slow (data) -Fast (data) Position 30.0 25.0 20.0 15.0 10.0 5.0 0.0 2019/11/3 12:00 2019/11/20 12:00 2019/12/7 12:00 2020/1/27 12:00 2019/12/24 12:00 2020/1/10 12:00 2020/2/13 12:00

Each spot corresponds to the time information.

Position difference between Moving wall and Fixed wall

Tracking efficiency (angle dependence) for one film

Scintillation Tracker ↓ Operation result during neutrino beam exposure Bun a-1) χ² / ndf 0.336 # of events/10¹⁵ protons Prob 0.88 Total POT: 2.650e+20 0.7947 ± 0.001742 0.86 0.84 0.82 2.4cm 0.8 3.3mm 0.78 0.76 0.74 0.72 0 0.9 31.83 / 28 # of events/10¹⁵ protons Prob 0.2813 0.88 Event Rate 0.86 0.84 0.82 0.8 0.78 0.76 0.74 0.72 0.7 MC DATA ∆y Distribution Entries/0.4 mm Position resolution Vertical Angle resolution 0.14 Vertical 7 Horizontal Horizontal 0.12 80 σ(δ(x/y)) [mm] 0.1 $\sigma = -2mm$ $\alpha(9(\tan^{-1.0}_{x/y}))$ 5 60 40 0.04 20 0.02 0<u>2</u> -1.5 0.5 y_{recon}-y_{true}[cm] -1 -0.5 0 0^C0 0^L 0.2 0.6 0.8 0.4 1. 0.2 0.4 0.6 0.8 1.2 1 1 Position resolution of Scintillation $|\tan\theta_{x/v}|$ $Itan\theta_{x/v}I$ Tracker for straight tracks

The performance (position and angle resolution) of the Scintillation Tracker was as expected.

12

T. Odagawa (Kyoto Univ.)

Track matching efficiency

High detection and connection efficiencies have been achieved at each stage.

Detected neutrino events

ECC – Emulsion Shifter – Scintillation Tracker – Baby MIND worked well and succeeded in μ ID and measuring their charge.

Emulsion scanning status

• Emulsion scanning was completed.

 \rightarrow First result will be shown in this summer.

- Emulsion data taking is progressing as planned except for the effect from COVID-19 in 2020 and the hardware troubles of the scanning system that occurred last year.
- Tracking efficiency is sufficiently high.

Particle Identification

The detailed was presented by Odagawa-san in young talk.

Event Viewer Iron event (121 events) 200 **Event candidate** 150 Fe:121 100 Water:95

Very preliminary result in sub-sample

*Emulsion gel,base, packing interaction are included

19

Direct vertex hunting in ECC

20 My master thesis

- Cross-check of muon prediction based analysis
- Electron neutrino event search

In this method, vertices are reconstructed using only ECC tracks

- ••• the direction of analysis is the opposite of the conventional method
- •••analysis is not biased by electrical detectors

Direct vertex hunting in ECC

= Independent analysis confirms conventional methods.

21

By increasing the statistics, we can guarantee the correctness of the conventional method and also search for electron-neutrino interactions.

Schedule

The emulsion scanning of E71a will be completed.
→We plan to concentrate on its physics analysis in 2022.
→First physics output hope to be shown in this summer.
The next physics run (E71b) will be implemented in JFY2023.

Requested POT	10 X 10 ²⁰
E71a	4.8 x 10 ²⁰
Done!	
E71b	5.2 x 10 ²⁰

E71a analysis:

As shown in results of detector run,

cross-section and proton/pion kinematics information on v_{μ} -water and iron interactions will be obtained with more than 10 times statistics from detector run.

Also, if 2p2h is the cause of the excess of CCQE like event, back-toback proton would be increased clearly in 0pi2p events.

Toward next physics run (E71b)

We have developed an automatic emulsion pouring system and a new higher speed emulsion scanning system in Nagoya U.

It is still under discussion, but we probably can install about Four times larger detectors in next run to increase statistics.

Summary

- Precise measurement of sub-multi GeV neutrino-water interactions is important for future neutrino oscillation analysis (especially, 2p2h and v_e) and proton information is a key to improve neutrino-nucleus interaction model.
- We have demonstrated the analysis of NINJA experiment in detector runs.
- The data taking of our first physics run (E71a) was completed.
- The hybrid analysis between emulsion detectors and electronic detectors works well, and PID analysis was also done well.
- Non-bias analysis method has been developed for cross-check of conventional analysis method and v_e CC event search.
- We will start physics analysis with full statistics of E71a, corresponds to 4.8 x 10²⁰ POT. The first physics result will be reported in this summer.
- Second physics run (E71b) is scheduled in JFY2023. The new emulsion production systems and readout system allow us to make a detector four times larger.

Back up