Cogenesis of Dark Matter and Baryon Asymmetries in Scotogenic Model

(work in progress)

Saitama University M1 Yuhei Sakai

Collaborator : Kento Asai , Joe Sato , Yasutaka Takanishi

- Motivation
- Scotogenic Model

E. Ma , Phys. Rev. D 73 (2006) 077301

- Neutrino masses
- Dark Matter
- Asymmetric Dark Matter (ADM) Model

D. E. Kaplan, M. A. Luty, K. M. Zurek, Phys. Rev. D 79 (2009) 115016

• $\Omega_{\rm DM} \cong 5\Omega_{\rm B}$

Combine ADM scenario with Scotgenic Model and explain Neutrino masses , Dark Matter , Baryon Asymmetry simultaneously

• Model

Standard Model

Scotogenic Model

+ N_i (i = 1,2,3) (singlet fermion) + η (doublet complex scalar)

field	fermion			scalar		
	L	e_R	N	H	η	σ
$\mathrm{SU}(2)_L$	2	1	1	2	2	1
Z_2	+	+	_	+	_	_

+ σ (singlet real scalar) DM

Table 1 : Z_2 symmetry assignment

• Model

Neutrino mass

$$\eta = (\eta^{+}, (\eta_{R} + i\eta_{I})/\sqrt{2})^{T}$$

$$\mathcal{M}_{\nu})_{\alpha\beta} = \sum_{i} \frac{h_{\alpha i}^{*}h_{\beta i}^{*}}{32\pi^{2}} M_{i} \left[\frac{m_{\eta_{R}}^{2}}{m_{\eta_{R}}^{2} - M_{i}^{2}} \ln \frac{m_{\eta_{R}}^{2}}{M_{i}^{2}} - \frac{m_{\eta_{I}}^{2}}{m_{\eta_{I}}^{2} - M_{i}^{2}} \ln \frac{m_{\eta_{I}}^{2}}{M_{i}^{2}} \right] \nu_{\alpha} \xrightarrow{\mathsf{Fig.1:One-loop diagram}} Fig.1: One-loop diagram$$

$$\mathcal{M}_{\nu} = h^* \mathcal{D}_{\Lambda}^{-1} h^{\dagger}$$
$$(\mathcal{D}_{\Lambda})_{ii} = \frac{2\pi^2}{\lambda_8} \xi_i \frac{2M_i}{v^2} \equiv \Lambda_i$$

 $U^T \mathcal{M}_{\nu} U = \operatorname{diag}(m_1, m_2, m_3) \equiv D_{\nu}$

(H)

· · 〈H〉

U : Maki-Nakagawa-Sakata(MNS)matrix

Casas-Ibarra parametrization

$$h_{\alpha i} = \left(U D_{\nu}^{\frac{1}{2}} R^{\dagger} D_{\Lambda}^{\frac{1}{2}} \right)_{\alpha i}$$

R : complex orthogonal matrix

Yukawa matrix depends on λ_8 , M_i

Cogenesis

 $^{\rm o}$ Story of the generation of dark matter

Cogenesis

 $^{\rm o}$ Story of the generation of dark matter

• $T_2 > T > 10^2 \text{GeV}$

The decay of inert higgs η completes at this era

$$n_{\eta-\overline{\eta}} \cong 0 \text{ and } n_{L-\overline{L}} \cong n_{\text{DM}}$$

 $\eta\eta \rightarrow HH$ should be out of equilibrium from M_1 to T_2

Cogenesis

The Yukawa matrix and the interaction of $\eta\eta \rightarrow HH$ depend on λ_8

Calculate Lepton asymmetry under this condition

 L_{α}

 $h_{\alpha i}$

η

Ni

Calculation

 $^{\circ}$ Calculate baryon to photon ratio η_B in a standard Leptogenesis

$$\begin{split} \eta_B &\approx -0.01 \epsilon_1 \kappa_1 & \epsilon_1 \text{: asymmetry parameter} \\ \kappa_1 \text{: efficiency factor} \\ \epsilon_i &= \frac{1}{8\pi} \frac{1}{(h^{\dagger}h)_{ii}} \sum_{j \neq i} \operatorname{Im} \left[\left\{ (h^{\dagger}h)_{ij} \right\}^2 \right] \frac{1}{\sqrt{r_{ji}}} F(r_{ji}, \eta_i) & \eta_i = m_{\eta}^2 / M_i^2 \\ F(r_{ji}, \eta_i) &= \sqrt{r_{ji}} \left[f(r_{ji}, \eta_i) - \frac{\sqrt{r_{ji}}}{r_{ji} - 1} (1 - \eta_i)^2 \right] & r_{ji} = M_j^2 / M_i^2 \\ f(r_{ji}, \eta_i) &= \sqrt{r_{ji}} \left[1 + \frac{(1 - 2\eta_i + r_{ji})}{(1 - \eta_i)^2} \ln \left(\frac{r_{ji} - \eta_i^2}{1 - 2\eta_i + r_{ji}} \right) \right] \end{split}$$

$$\kappa_1(K_1) \simeq \frac{1}{1.2K_1 \left[\ln K_1\right]^{0.8}}$$

This approximation holds in the range: $10 < K_1 < 50$

$$K_{1} = \frac{1}{8\pi} \sqrt{\frac{90}{8\pi^{3}g_{*}}} \frac{M_{\text{Pl}}}{M_{1}} (h^{\dagger}h)_{11} (1-\eta_{1})^{2} \qquad K_{1} : \text{decay parameter}$$
$$= \frac{2\pi^{2}}{\lambda_{5}} \xi_{1} \sqrt{\frac{45}{64\pi^{5}g_{*}}} \frac{M_{\text{Pl}}}{v^{2}} (RD_{\mathcal{M}_{\nu}}R^{\dagger})_{11} (1-\eta_{1})^{2}$$

• Result

Summary

Combine ADM scenario to Scotgenic Model

• λ_8 is involved in the the Yukawa matrix and the interaction of $\eta\eta \rightarrow HH$.

• There are parameters that satisfy under these conditions.

 As a future prospect, we will verify whether there are parameters that satisfy other conditions

Thank you for your attention.

Appendix

•
$$\lambda_8 = 3.4 \times 10^{-8} \sqrt{m_{\eta}/[\text{GeV}]}$$

• $M_1 = m_{\eta} \times 10^2$

·
$$\lambda_8 = 3.4 \times 10^{-9} \sqrt{m_\eta/[\text{GeV}]}$$

· $M_1 = m_\eta \times 10^2$

·
$$\lambda_8 = 1.0 \times 10^{-8} \sqrt{m_\eta/[\text{GeV}]}$$

· $M_1 = m_\eta \times 10^2$

·
$$\lambda_8 = 3.4 \times 10^{-8} \sqrt{m_\eta/[\text{GeV}]}$$

· $M_1 = m_\eta \times 10^3$

