B02: ニュートリノ精密測定にむけた原子核乾板開発 Status of Emulsion Production Facility

Hiroki Rokujo (Nagoya)

Why do we use emulsion? A: One and Only Vertex detector ν , had., e^{+–}, Nucl. **Cross section** (Electron microscopic view) ~60-70 µm Emulsion ~200 µm Plastic ~60-70 µm Emulsion

Why do we use emulsion? A: One and Only Vertex detector

function as 3-D position censors. Intrinsic resolution: ~ 50 nm

Evolution of Emulsion Scanning Speed and Decline of Photographic Film Industry

We started the development and supply of Nuclear Emulsion itself in our laboratory (2010–)

In 2010, Introduction of Emulsion Gel Production System

in cooperation with former members of Fuji Film

we developed and evaluated self-controlled nuclear emulsion for each purpose of experiments.

the Use of NAGOYA Emulsions

2010- Install & development started

the Use of NAGOYA Emulsions

- 2010- Install & development started
- 2013- Supplied self-controlled films to real experiments.
- 2014- New projects launched. Successfully achieved good results.

the Use of NAGOYA Emulsions

- 2010- Install & development started
- 2013- Supplied self-controlled films to real experiments.
- 2014- New projects launched. Successfully achieved good results.
- 2019- All projects plan to expand the scale of experiment

Started stable operation of gel production in the new facility

Evaluation of Sensitivity

National Institutes of Natural Sciences Institute for Molecular Science UVSOR Synchrotron Facility Ultra Violet Synchrotron Orbital Radiation

2ndry e+/-

B & BOR THE OR DO NOT BE ADD.

100 µm

~10 MeV electron beam

Sensitivity: Grain Density (signal grain per 100µm) Noise: Fog Density (random noise per 1000µm³)

Performance of Emulsion Gel produced in the new facility

Upgrade of Film Production

Conventional method (手塗り)

- Knife Coater Method-Hot **Development of** Knife coater head Emulsion clearance **Automatic Coat Method** Gel Plastic film **Viscosity Tuning** $\begin{bmatrix} \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \end{bmatrix}_{\mathbf{n}}^{\mathsf{SSS}}$ $= \mathbf{v} \\ \mathbf{v} \\$

2021 May.-Roll-to-roll emulsion film coating facility started practical operation (Real production in the dark)

Drying

achieved production speed of ~8 m²/day

Winding

Coating

Melting

Double-sided emulsion film after two processes

Atm. γ rays & Cosmic rays Observation Rehearsal (GRAINE team)

γ ray converterw/ the same structure asthe next balloon exp.

乗鞍山頂 標高2700m (730hPa)

設置班(曇天!!)

10R1KURA 5074 4221

Production, preparation, observation, development, analysis etc. towards the next experiment

understand overall performance of current film and problem →feedback to production

Thickness Measurement

25 cm x 50 cm 70µm (design) 345µm 205µm x45 plates with Thickness gauge 70µm

Entries

Mean

340 360 Thickness[µm]

Entries

360

Thickness[µm]

Entries

Std Dev

360

Thickness[µm]

Mean

Std Dev 5.916

Mean

340

<u>340</u>

Std Dev 5.113

90

380

90

380

90

380

340.3

4.876

341.7

338.8

Evaluation of R-to-R Film with Scanning Data

Confirmed the sufficient track-finding efficiency(>96%) and position/angle accuracy in the wide range of track angle in the whole chamber. Event reconstruction analysis is ongoing.

Summary & Plans

- The Use of NAGOYA emulsion is increasing. But production capacity was limited (200-300 m²/year)
- The new emulsion facilities (gel & coat) are operating from 2021.
- We started the supply to the experiments conducted in 2021-2022.
 - DsTau-2021/2022run ~100+100 m²
 - FASERv-2022 ~150 m²
 - SND-2022 ~60 m²
 - GRAINE 2023 ~600 m²
 - MuonRadiography ~100 m²
 - NINJA 2023 ~500 m²
- Emulsion Experiments enter to the next stage !
- Stay tuned for results of our experiments !