B02: ニュートリノ精密測定にむけた原子核乾板開発

原子核乾板製造設備によって可能になる実験計画 宇宙ガンマ線精密観測計画 GRAINE

電子対飛跡の精密測定システム開発

(中村悠哉 博士論文『エマルション望遠鏡によるガンマ線天体の高解像度撮像』の一部)

PTEP EDITOR'S CHOICE Y.Nakamura et al, PTEP, 2021,12 JPS Hot Topics https://jpsht.jps.jp/article/2.007.html

GRAINE Project

Cosmic y-ray Observation in sub-GeV/GeV using Balloon-borne Nuclear Emulsion Telescope

PI: S.Aoki(Kobe)

photo: GRAINE 2018 Balloon Experiment 2018.4.26 @ AUS

JPS Hot Topics

Gamma rays (10 MeV-100 GeV region)

Telescope with a nuclear emulsion chamber

Emulsion films

Time stamper

衛星では実現できない 次世代ガンマ線望遠鏡 世界最大口径(~10倍) 世界最高解像度(~100倍) 世界初偏光有感(前例無)

Detection of Vela pulsar Highest Imaging (0.5°, >80MeV)

Scientific Balloon Launch provided by ISAS/JAXA

→ Large-scale GRAINE-Next in 2023 (approved by JAXA)

Gamma-ray Observation (sub-GeV/GeV region)

Gamma-ray Observation (sub-GeV/GeV region)

Imaging performance of telescopes (Angular resolution)

Radio

Infrared

Visible

X ray

Crab Nebula (M1:SN1054)

↓0.1度

γ ray >1GeV (Fermi-LAT)

> 月の大きさ 程度にボケる

角度分解能が <u>
圧倒的に不足!</u>

Unsolved issues in gamma-ray observation

Unknown gamma-ray emission in the galactic center region

Annihilation of DM? unresolved astrophysical object?

Understanding spacial distribution is important for model verification ≓limited by the current angular resolution (1 deg.)

GRAINE realizes high-resolution observation at the galactic center region (<0.1 deg.)

GeV-γ excess Observation near the galactic center Differential Flux for each distance (b) from the center

Angular Resolution for Gamma Ray

Angular Resolution for Gamma Ray

Precise measurement of electron pair track

High-speed scanning Detects straight lines from hit information in 16 layers

Precise scanning Measures 3D positions of each silver grain to maximize the information contained in Emulsion

Expected to improve angular resolution (x1.5-3)

(Demonstration is already proven in beam test+manual meas.)

Precise measurement of electron pair track

High-speed scanning Detects straight lines from hit information in 16 layers

Precise scanning Measures 3D positions of each silver grain to maximize the information contained in Emulsion

Expected to improve angular resolution (x1.5-3)

(Demonstration is already proven in beam test+manual meas.)

e-pair event selection (high-speed scan) → Event-by-event Re-analysis(precise scan) Development (for high statistics, large area telescope) : Automation & Combined analysis scheme

Microscope for precise measurement

Precise measurement system

The FoV is narrow, but higher resolution microscope

Development of automated measurement of silver grain positions ~Tomographic image acquisition, XY position measurement~.

Development of automated measurement of silver grain positions ~Continuous image acquisition, Z-position measurement~.

Development of automated measurement of silver grain positions -Result of automatic 3D position measurement-

528 grains/~38*38*50 µm³ consistent with expected value from manual measurement

The 3D coordinates of silver grains in the emulsion layer can be automatically obtained from the continuous tomographic image.

Development of automated measurement of silver grain positions -Result of automatic 3D position measurement-

The 3D coordinates of silver grains in the emulsion layer car be automatically obtained from the continuous tomographic image. →Evaluate position accuracy using high momentum tracks

Development of automated measurement of silver grain positions -Result of resolution of 3D position measurement-

17

Compare data with simulations assuming position accuracy and estimate measurement accuracy

Achieved automation of precise 3D position measurement of silver grains (measurement accuracy improved by ~1 order of magnitude)

Evaluation of gamma-ray angular resolution with Re-analysis scheme

Using flight data γ-rays from GRAINE2018

18

Angular difference distribution (high speed scan data) E_{γ} :500-700MeV, tan θ_{γ} :0.8-1.0

Randomly selected 30 event in signal region (Estimated contamination BG: 1.4 events) and Re-analysis the angle w/ Precise scan

Result of gamma-ray angular resolution w/ Re-analysis (high-speed & precision)

19

Gamma-ray angular resolution w/ Re-analysis (high-speed & precision)

Gamma-ray angular resolution w/ Re-analysis (high-speed & precision)

GRAINE-Next in 2023 (approved)

Summary

 Developed a system to automatically measure the three-dimensional coordinates of silver particles in emulsion. Achieved positioning accuracy ~1 order better than high speed system <u>δ_{xy}=0.067μm</u>, <u>δ_z=0.231μm</u>

Angular Res. of <0.1 degree achievable with 1-1.5 GeV gamma rays

 Reanalysis of γ-ray angles by precision measurements for GRAINE2018 flight data due to hadron reactions

Result. **<u>0.21 deg.</u>** @ E_Y:500-700MeV, tan θ_Y :0.8-1.0 Achieved ~2.7x improvement compared with high-speed system

 →Angular resolution improvement in sub-GeV and polarization measurement are realized)

GRAINE 2023 with large-area x precision measurements will start high-resolution observations of galactic centers, etc.