宇宙の進化と素粒子模型

平成28年度宇宙線研究所共同利用研究成果発表会 宇宙線研究所理論グループ 伊部昌宏

東大宇宙線研 : 川崎、伊部、他名古屋大: 久野京都大学: 瀬波金沢大: 青木東北大: 高橋史宜KEK: 郡東工大: 山口神奈川大: 粕谷佐賀大: 高橋智(合計17名)国内旅費: 10万円

2016 業績一部

1) <u>Constrains on \$L_\mu-L_\tau\$ Gauge Interactions from Rare Kaon Decay.</u> By Masahiro Ibe, Wakutaka Nakano, Motoo Suzuki. [arXiv:1611.08460 [hep-ph]].

2) Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments.

By Keisuke Inomata, Masahiro Kawasaki, Kyohei Mukaida, Yuichiro Tada, Tsutomu T. Yanagida. [arXiv:1611.06130 [astro-ph.CO]].

3) Revisiting gravitino dark matter in thermal leptogenesis.

By Masahiro Ibe, Motoo Suzuki, Tsutomu T. Yanagida. [arXiv:1609.06834 [hep-ph]].

4) Foreground effect on the \$J\$-factor estimation of classical dwarf spheroidal galaxies.

By Koji Ichikawa, Miho N. Ishigaki, Shigeki Matsumoto, Masahiro Ibe, Hajime Sugai, Kohei Hayashi. [arXiv:1608.01749 [astro-ph.GA]].

5) Lower limit on the gravitino mass in low-scale gauge mediation with \$m_H \simeg 125\$GeV.

By Masahiro Ibe, Tsutomu T. Yanagida. [arXiv:1608.01610 [hep-ph]]. <u>10.1016/j.physletb.2016.11.016</u>. Phys.Lett. B764 (2017) 260-264.

6) <u>Cracking Down on Fake Photons - A Case of 750 GeV Diphoton Resonance -.</u> By Hajime Fukuda, Masahiro Ibe, Osamu Jinnouchi, Mihoko Nojiri. [arXiv:1607.01936 [hep-ph]].

7) Primordial black holes as dark matter in supergravity inflation models.

By Masahiro Kawasaki, Alexander Kusenko, Yuichiro Tada, Tsutomu T. Yanagida. [arXiv:1606.07631 [astro-ph.CO]]. <u>10.1103/PhysRevD.94.083523</u>. Phys.Rev. D94 (2016) no.8, 083523.

8) An update on the Axion Helioscopes front: current activities at CAST and the IAXO project. By T. Dafni et al..

<u>10.1016/j.nuclphysbps.2015.09.033</u>. Nucl.Part.Phys.Proc. 273-275 (2016) 244-249.

9) <u>Thermal Relic Dark Matter Beyond the Unitarity Limit.</u>

By Keisuke Harigaya, Masahiro Ibe, Kunio Kaneta, Wakutaka Nakano, Motoo Suzuki. [arXiv:1606.00159 [hep-ph]]. <u>10.1007/JHEP08(2016)151</u>. JHEP 1608 (2016) 151. 10) <u>Constraining light gravitino mass with 21 cm line observation.</u> By Yoshihiko Oyama, Masahiro Kawasaki. [arXiv:1605.09191 [astro-ph.CO]].

11) <u>Simple cosmological solution to the Higgs field instability problem in chaotic inflation and the formation of primordial black holes.</u>
By Masahiro Kawasaki, Kyohei Mukaida, Tsutomu T. Yanagida.
[arXiv:1605.04974 [hep-ph]].
<u>10.1103/PhysRevD.94.063509</u>.
Phys.Rev. D94 (2016) no.6, 063509.

12) <u>Revisiting constraints on small scale perturbations from big-bang nucleosynthesis.</u>
By Keisuke Inomata, Masahiro Kawasaki, Yuichiro Tada.
[arXiv:1605.04646 [astro-ph.CO]].
10.1103/PhysRevD.94.043527.
Phys.Rev. D94 (2016) no.4, 043527.

13) Charged Q-ball Dark Matter from \$B\$ and \$L\$ direction.

By Jeong-Pyong Hong, Masahiro Kawasaki, Masaki Yamada. [arXiv:1604.04352 [hep-ph]]. <u>10.1088/1475-7516/2016/08/053</u>. JCAP 1608 (2016) no.08, 053.

14) Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites. By Kohei Hayashi, Koji Ichikawa, Shigeki Matsumoto, Masahiro Ibe, Miho N. Ishigaki, Hajime Sugai. [arXiv:1603.08046 [astro-ph.GA]]. 10.1093/mnras/stw1457. Mon.Not.Roy.Astron.Soc. 461 (2016) no.3, 2914-2928.

15) <u>750 GeV diphoton resonance in a visible heavy QCD axion model.</u>
By Cheng-Wei Chiang, Hajime Fukuda, Masahiro Ibe, Tsutomu T. Yanagida. [arXiv:1602.07909 [hep-ph]].
<u>10.1103/PhysRevD.93.095016</u>.
Phys.Rev. D93 (2016) no.9, 095016.

16) Why three generations?.

By Masahiro Ibe, Alexander Kusenko, Tsutomu T. Yanagida. [arXiv:1602.03003 [hep-ph]]. <u>10.1016/j.physletb.2016.05.025</u>. Phys.Lett. B758 (2016) 365-369.

17) Cosmology with a Heavy Polonyi Field.

By Keisuke Harigaya, Taku Hayakawa, Masahiro Kawasaki, Masaki Yamada. [arXiv:1601.02140 [hep-ph]]. <u>10.1088/1475-7516/2016/06/015</u>. JCAP 1606 (2016) no.06, 015.

2016 業績一部

1) <u>Constrains on \$L_\mu-L_\tau\$ Gauge Interactions from Rare Kao</u> By Masahiro Ibe, Wakutaka Nakano, Motoo Suzuki. [arXiv:1611.08460 [hep-ph]].

2) Inflationary primordial black holes for the LIGO gravitational wave pulsar timing array experiments.

By Keisuke Inomata, Masahiro Kawasaki, Kyohei Mukaida, Yuichiro Tsutomu T. Yanagida. [arXiv:1611.06130 [astro-ph.CO]].

3) <u>Revisiting gravitino dark matter in thermal leptogenesis.</u> By Masahiro Ibe, Motoo Suzuki, Tsutomu T. Yanagida. [arXiv:1609.06834 [hep-ph]].

4) Foreground effect on the \$J\$-factor estimation of classical dwarfs galaxies.

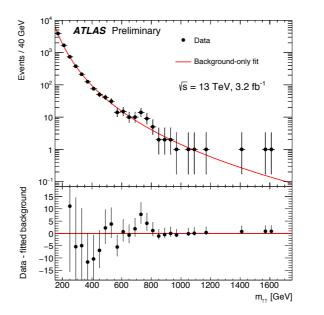
By Koji Ichikawa, Miho N. Ishigaki, Shigeki Matsumoto, Masahiro Ibe Sugai, Kohei Hayashi. [arXiv:1608.01749 [astro-ph.GA]].

5) Lower limit on the gravitino mass in low-scale gauge mediation with simeq 125\$GeV. By Masahiro Ibe, Tsutomu T. Yanagida. [arXiv:1608.01610 [hep-ph]]. 10.1016/j.physletb.2016.11.016.

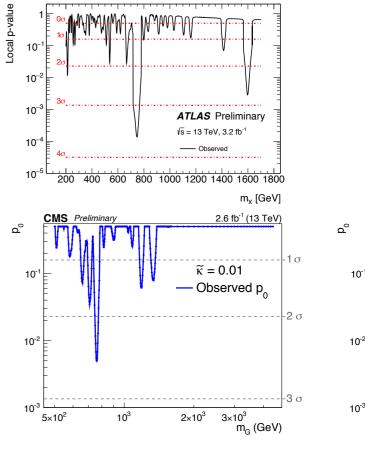
Phys.Lett B764 (2017) 260-264.

6) <u>Cracking Down on Fake Photons - A Case of 750 GeV Diphoton F</u> By Hajime Fukuda, Masahiro Ibe, Osamu Jinnouchi, Mihoko Nojiri. [arXiv:1607.01936 [hep-ph]].

7) Primordial black holes as dark matter in supergravity inflation models.
By Masahiro Kawasaki, Alexander Kusenko, Yuichiro Tada, Tsutomu T. Yanagida. [arXiv:1606.07631 [astro-ph.CO]].
10.1103/PhysRevD.94.083523.
Phys.Rev. D94 (2016) no.8, 083523.


8) An update on the Axion Helioscopes front: current activities at CAST and the IAXO project. By T. Dafni et al.. 10.1016/i.nuclphysbps.2015.09.033.

Nucl.Part.Phys.Proc. 273-275 (2016) 244-249.


9) <u>Thermal Relic Dark Matter Beyond the Unitarity Limit.</u>

By Keisuke Harigaya, Masahiro Ibe, Kunio Kaneta, Wakutaka Nakano, Motoo Suzuki. [arXiv:1606.00159 [hep-ph]]. <u>10.1007/JHEP08(2016)151</u>. JHEP 1608 (2016) 151.

News! Apart from the 2TeV excess, **both** ATLAS and CMS reported an excess at 750GeV in di-photon search (2015/12/15)!

We could have some dynamics within a TeV range?

10²

(Ou) model can be tuned to explain this 750GeV signal.)

Mon.Not.Roy.Astron.Soc. 461 (2016) no.3, 2914-2928.

15) <u>750 GeV diphoton resonance in a visible heavy QCD axion model.</u>
By Cheng-Wei Chiang, Hajime Fukuda, Masahiro Ibe, Tsutomu T. Yanagida.
[arXiv:1602.07909 [hep-ph]].
<u>10.1103/PhysRevD.93.095016</u>.
Phys.Rev. D93 (2016) no.9, 095016.

16) <u>Why three generations?</u>.
By Masahiro Ibe, Alexander Kusenko, Tsutomu T. Yanagida. [arXiv:1602.03003 [hep-ph]].
<u>10.1016/j.physletb.2016.05.025</u>.
Phys.Lett. B758 (2016) 365-369.

17) Cosmology with a Heavy Polonyi Field.

By Keisuke Harigaya, Taku Hayakawa, Masahiro Kawasaki, Masaki Yamada. [arXiv:1601.02140 [hep-ph]]. <u>10.1088/1475-7516/2016/06/015</u>. JCAP 1606 (2016) no.06, 015.

2016 業績一部

1) Constrains on \$L \mu-L \tau\$ Gauge Interactions from Rare Kaon Decay.

20 GeV

(data-fit)/σ_{sta}

By Masahiro Ibe, Wakutaka Nakano, Motoo Suzuki. [arXiv:1611.08460 [hep-ph]].

10) Constraining light gravitino mass with 21 cm line observation. By Yoshihiko Oyama, Masahiro Kawasaki.

750GeV Diphoton Resonance (ICHEP 2016)

2) Inflationary primordial black hole: pulsar timing array experiments. By Keisuke Inomata, Masahiro Kaw Tsutomu T. Yanagida. [arXiv:1611.06130 [astro-ph.CO]].

3) Revisiting graviting dark matter in

By Masahiro Ibe, Motoo Suzuki, Tsi [arXiv:1609.06834 [hep-ph]].

4) Foreground effect on the \$J\$-fac galaxies.

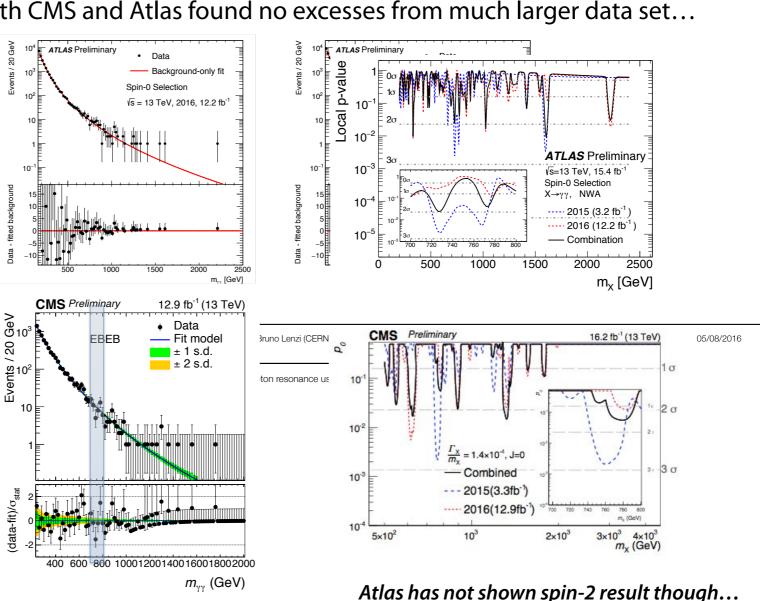
By Koji Ichikawa, Miho N. Ishigaki, Sugai, Kohei Hayashi. [arXiv:1608.01749 [astro-ph.GA]].

5) Lower limit on the gravitino mass \simeg 125\$GeV.

By Masahiro Ibe, Tsutomu T. Yanag [arXiv:1608.01610 [hep-ph]]. 10.1016/j.physletb.2016.11.016. Phys.Lett. B764 (2017) 260-264.

6) Cracking Down on Fake Photons By Hajime Fukuda, Masahiro Ibe, C [arXiv:1607.01936 [hep-ph]].

7) Primordial black holes as dark m By Masahiro Kawasaki, Alexander I [arXiv:1606.07631 [astro-ph.CO]]. 10.1103/PhysRevD.94.083523. Phys.Rev. D94 (2016) no.8, 083523


8) An update on the Axion Heliosco IAXO project. By T. Dafni et al..

10.1016/j.nuclphysbps.2015.09.033. Nucl.Part.Phys.Proc. 273-275 (2016) 244-249.

9) Thermal Relic Dark Matter Beyond the Unitarity Limit.

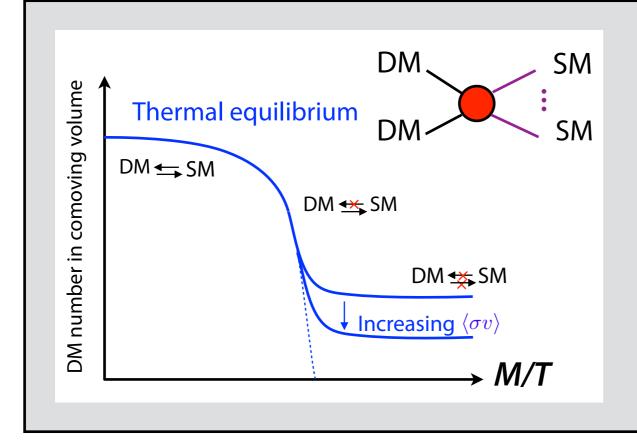
By Keisuke Harigaya, Masahiro Ibe, Kunio Kaneta, Wakutaka Nakano, Motoo Suzuki. [arXiv:1606.00159 [hep-ph]]. 10.1007/JHEP08(2016)151.

JHEP 1608 (2016) 151.

By Masahiro Ibe, Alexander Kusenko, Tsutomu T. Yanagida. [arXiv:1602.03003 [hep-ph]]. 10.1016/j.physletb.2016.05.025. Phys.Lett. B758 (2016) 365-369.

17) Cosmology with a Heavy Polonyi Field.

By Keisuke Harigaya, Taku Hayakawa, Masahiro Kawasaki, Masaki Yamada. [arXiv:1601.02140 [hep-ph]]. 10.1088/1475-7516/2016/06/015. JCAP 1606 (2016) no.06, 015.


Both CMS and Atlas found no excesses from much larger data set...

2016 業績の一例

Thermal Relic Dark Matter Beyond the Unitarity Limit

Based on JHEP 1608 (2016) 151 K.Harigaya, MI. K.Kaneta, W.Nakano, M.Suzuki

Thermal Relic Dark Matter !

- DM is in thermal equilibrium for T > M.
- For *M* < *T*, DM is no more produced efficiently.
- DM is still annihilating for *M* < *T* for a while...
- DM is also diluted by the cosmic expansion
- DM cannot find each other and stop annihilating at some point
- DM number in comoving volume is frozen

Dark Matter density does not depend on the initial condition!

✓ It is determined by the annihilation cross section.

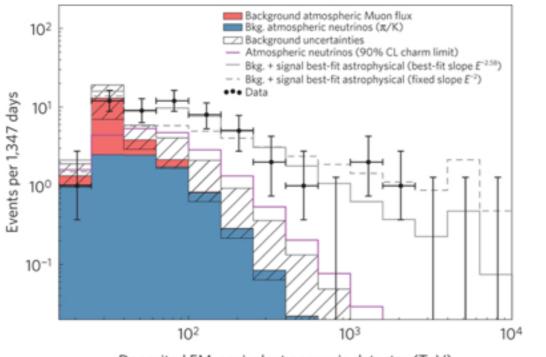
ex) For s-wave annihilation mode $\Omega_{DM}h^2 \simeq 0.1 \times \left(\frac{10^{-9} \,\text{GeV}^{-2}}{\langle \sigma v \rangle}\right)$

Upper Limit on thermal relic dark matter mass

The heavier the DM is, the larger couplings are required.

$$<\sigma v > \sim \frac{\pi \, a^2}{m_{DM^2}} \sim 10^{-9} \text{GeV}^{-2}$$

→ Unitarity Limit on WIMP mass (1990 Griest & Kamionkowski)


Each partial wave cross section is limited from above

$$\sigma_{\ell} v_{\rm rel} \leq \frac{16\pi (2\ell + 1)}{s \, v_{\rm rel}}$$
 (spineless case for simplicity)

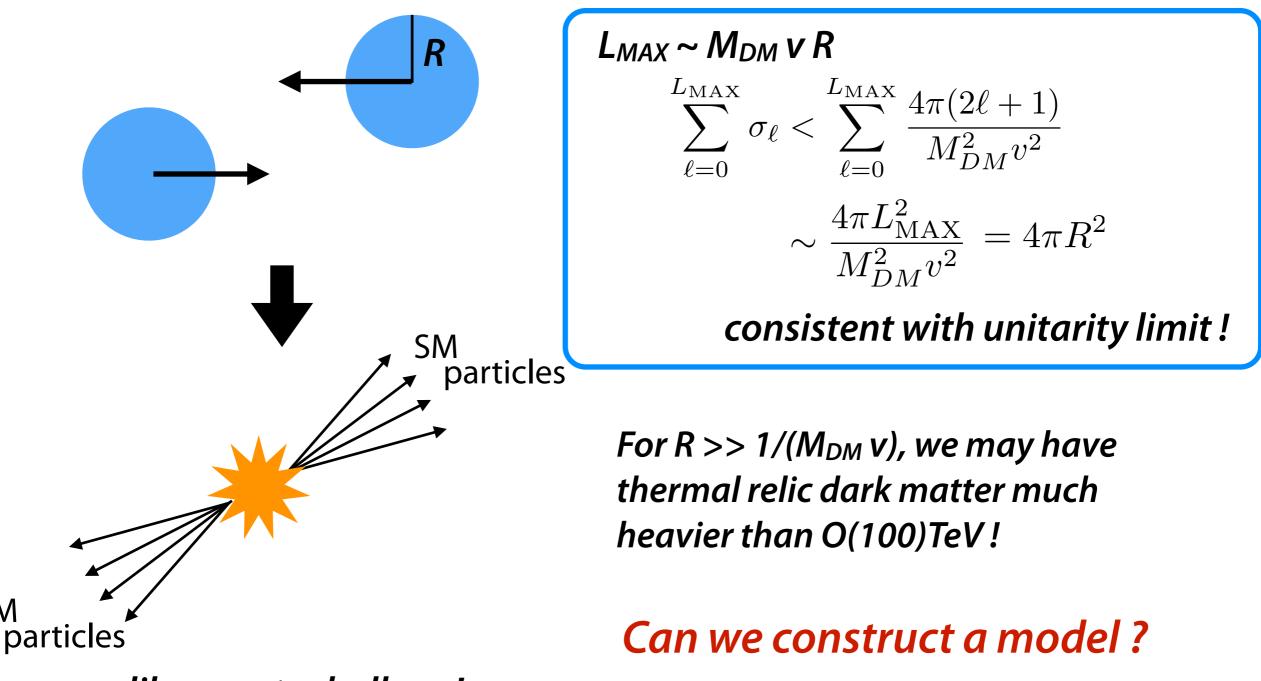
$$\rightarrow M_{DM} < 300 \, TeV$$

<u>Thermal Relic Dark Matter mass range : O(10)MeV < M_{DM} < 300TeV</u>

Excess in PeV neutrino in IceCube neutrino spectrum

Deposited EM-equivalent energy in detector (TeV)

- IceCube experiment observed excesses in the PeV range.
- The excess can be explained by decays of DM with a mass in the PeV range.

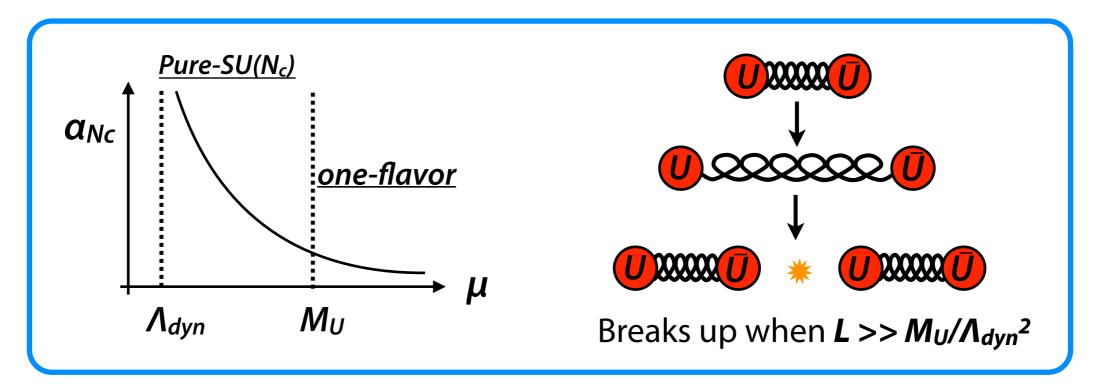

[1303.7302 : Feldstein, Kusenko, Mastumoto, Yanagida]

<u>Thermal Relic Dark Matter mass range : O(10)MeV < M_{DM} < 300TeV</u>

We need complicated thermal history to achieve correct abundance to explain the PeV excesses by DM ?

Can we go beyond the unitarity limit ?

✓ When dark matter annihilates as *extended objets*, the cross section can be a geometric cross sections, $\sigma \sim \pi R^2$ (1990 Griest & Kamionkowski)!


like a water balloon!

SM

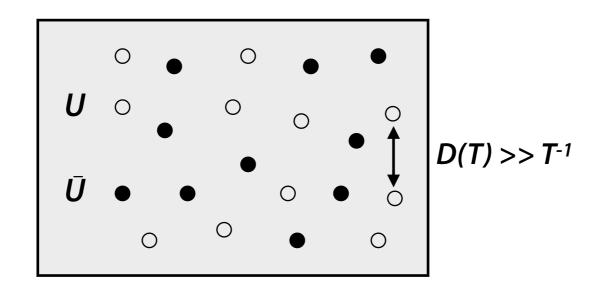
New strong interaction

✓ $SU(N_c)$ gauge theory with one-flavor of Weyl Fermion (U, \overline{U}).

✓ Fermion (U, \overline{U}) has a mass M_U (← in the PeV region)

Baryons are the dark matter candidate !

$$\mathcal{B}_0 \propto \epsilon^{i_1 i_2 \cdots i_{N_c}} U_{i_1} U_{i_2} \cdots U_{i_{N_c}}$$
 (spin $N_c/2$)


(cost of parallel spins : $a_{Nc}^4 M_U$) (cost of spacial excitation : $a_{Nc}^2 M_U$)

<u>Thermal History (early stage)</u>

 \checkmark At the very early universe, U's are in the thermal equilibrium.

✓ At *T* ~ $M_U/O(10)$, *U*'s decouple from the thermal bath as in the usual thermal relic dark matter.

After decoupling, typical distance between Quarks are much longer than T^{-1} .

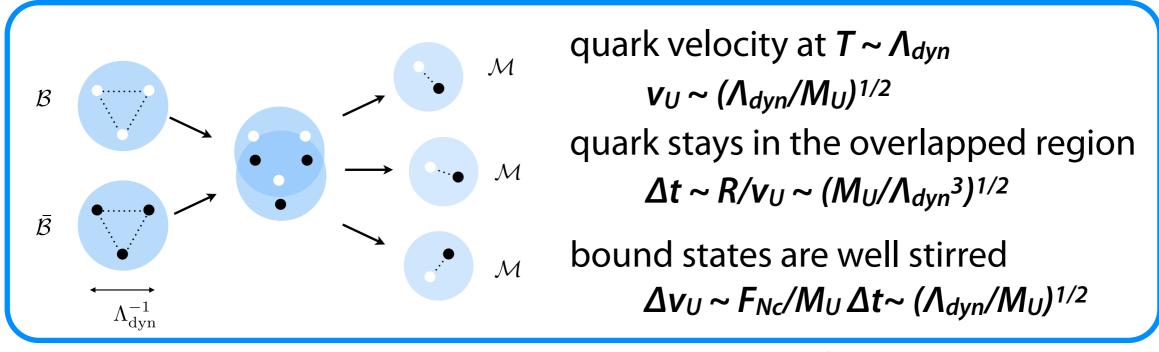
<u>Thermal History (at around T_c)</u>

✓ Below the critical temperature $T_c \sim \Lambda_{dyn}$, $SU(N_c)$ becomes strong.

 \rightarrow *U*'s are confined into Hadrons !

Below the critical temperature $T_c \sim \Lambda_{dyn}$, *U*'s are pulled by the flux-tube and form the bound states. Λ_{dyn}^{-1} \circ [When they are pulled by they lose their potential energies by the friction of the gluons (glueballs) in the thermal bath.]

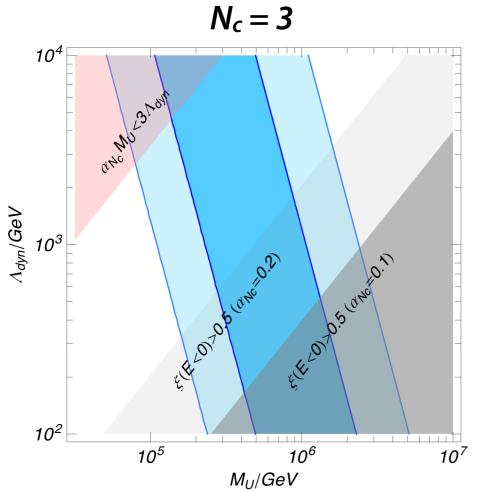
Heavy quarks are bounded by (see e.g. hep-ph/0001312)


$$V(r) \sim -\frac{\kappa \,\alpha_{N_c}}{r} + F_{N_c}(T) \, r \qquad \kappa = C_F = (N_c^2 - 1)/(2N_c)$$

 F_{Nc} : tension of flux tube

Fate of Baryons

- Baryons spend most of their time as excited states.
- Baryons collide with each other with a geometric cross section.


[see also '06 Kang, Luty, Nasri]

We expect the annihilation into mesons occurs with O(1) probability at each collision!

$$\mathcal{B} + \bar{\mathcal{B}} \to \mathcal{M} + \mathcal{M} + \mathcal{M} + (\mathcal{S}) + \cdots$$

The inverse process is negligible since *M decays* immediately!

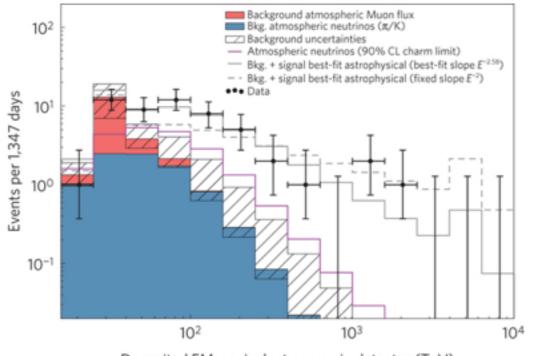
Fate of Baryons

✓ Boltzmann equation : $\dot{n}_B + 3Hn_B \simeq - \langle \sigma_B v \rangle n_B^2$. $\sigma_B = A\pi R^2 (T_c)$ A = O(1)

Relic Density $\Omega h^2 \sim 0.1 \times \frac{N_c}{A} \left(\frac{M_U}{10^6 \,\text{GeV}}\right)^{3/2}$

$$^{3/2} \left(\frac{\Lambda_{\rm dyn}}{10^3 \,{\rm GeV}} \right)^{1/2} \left(\frac{100}{g_*} \right)^{1/2}$$

Relic density does not depend on the density at $T > \Lambda_{dyn}$.


(dark matter mass $M_{DM} = 3xM_U$)

Blue Shaded Region : $\Omega h^2 \sim 0.1$ for A = 0.3 - 3(LightBlue Shaded Region : $\Omega h^2 \sim 0.1$ for A = 0.1 - 10) Pink Shaded Region : $SU(N_c)$ is too strong at $\mu \sim \kappa \alpha_{N_c} M_U$.

Gray Shaded Region : most stats are in ground state : $n_U(E_1)/n_U > 0.5$

PeV thermal relic dark matter is possible !

Application : Excess in IceCube neutrino spectrum

Deposited EM-equivalent energy in detector (TeV)

IceCube experiment observed excesses in the PeV range.

The excess can be explained by decays of DM with a mass in the PeV range.

[1303.7302 : Feldstein, Kusenko, Mastumoto, Yanagida]

In our model, we can explain the IceCube excess by thermal relic dark matter !

For $N_c = 3$, the Baryonic dark matter has spin 3/2 $\mathcal{L} = \frac{1}{M_*} (\bar{L}iD_\mu H^c) \gamma^\nu \gamma^\mu \psi_\nu$ $M_{DM} = 2.4 \, PeV (M_U = 0.8 \, PeV), M_* = 5 \times 10^{34} \, PeV (\tau = 10^{28} \, sec)$