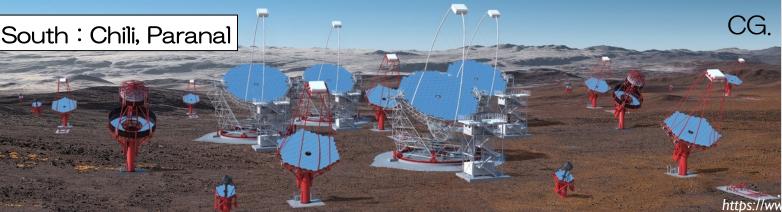

Status of CTA and LST

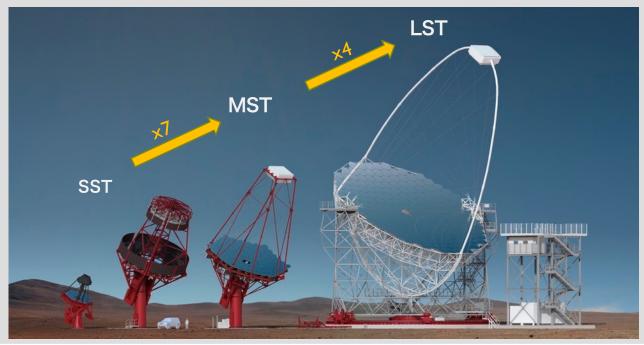
Takayuki Saito (ICRR) On behalf of CTA-Japan Consortium

https://www.cta-observatory.org/ Credit: Gabriel Pérez Diaz, IAC / Marc-André Besel, CTAO

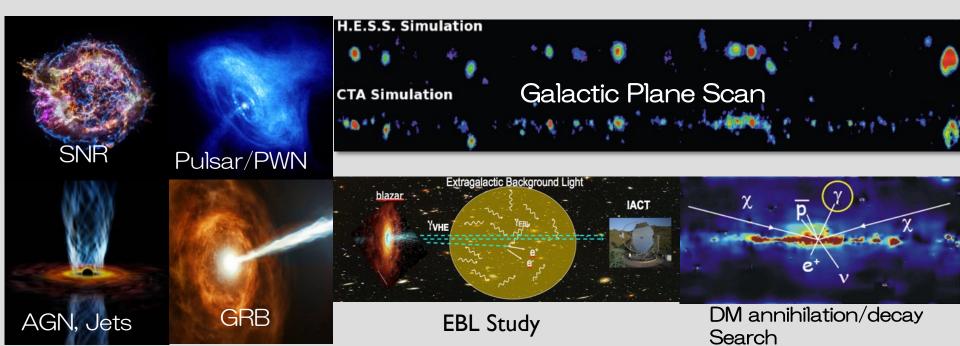

Extreme Universe 2023, Feb 6th -7th, @ Kashiwa Campus, Univ. of Tokyo

Cherenkov Telescope Array

- Array of tens of IACTs over a ~km² area
- 3 different sizes of telescopes, (LST, MST and SST)
- One array in each hemisphere.
- 25 different countries are participating
- More than 1500 Scientists are involved.

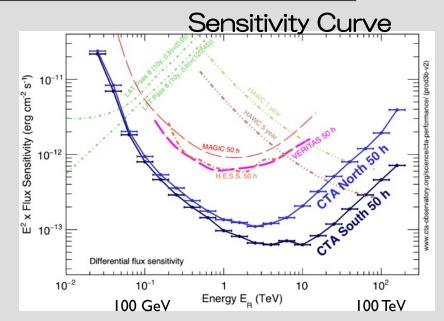


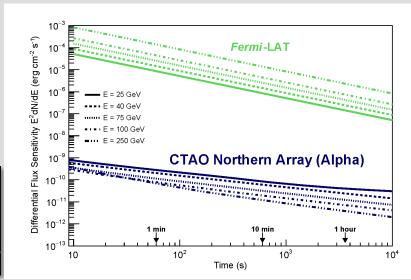
TELESCOPE DESIGN



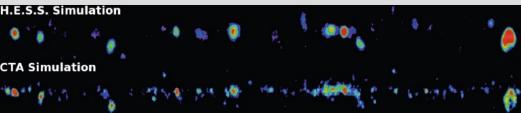
Telescope Types	SST	MS	т	LST		
Optics	Schwarzschild-Couder	SC	DC	Parabolic (Isochronous)		
FoV and Camera	10.5 deg SiPM	~10 deg SiPM	7.5 deg PMT	4.3 deg PMT		
Mirror Diameter	4.3m	9.7 m	11.5m	23m		
Energy Range	3 TeV - 300 TeV	100GeV -	- I0TeV	20GeV – 2000GeV		
Science Targets	Galactic Sources PeVatron (UHE CR)	Galactic Sources Nearby AGNs (z< Dark Matter	0.5)	Transient Sources AGNs(z<2), GRBs(z <4) Dark Matter		

Three major themes

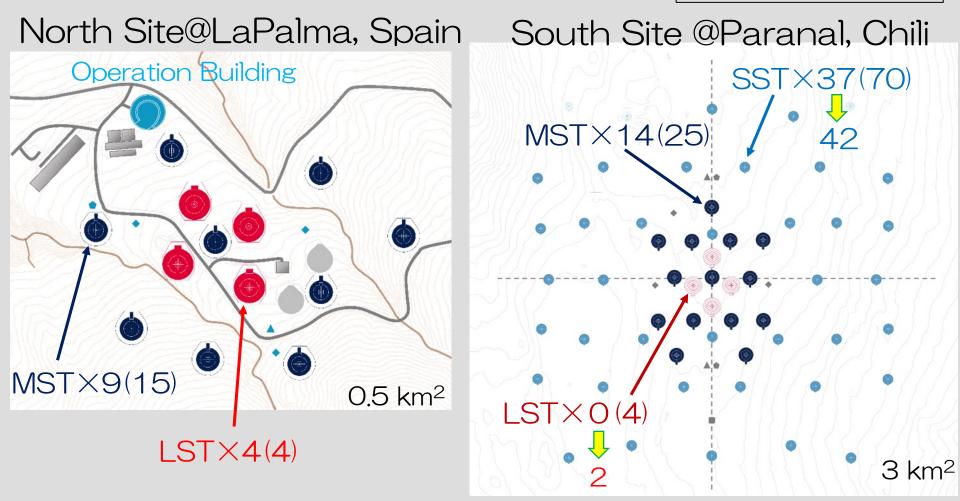

- I. Understanding the Origin and Role of Relativistic Cosmic Particles
 - Acceleration site and mechanism
 - Feedback to star formation and galaxy evolution
- 2. Probing Extreme Environments
 - Physical process at work close to neutron stars and black holes.
 - characteristics of relativistic jets, winds and explosions
- 3. Exploring Frontiers in Physics
 - Dark matter, Quantum Gravity, axion-like particles



Capability of CTA



- I0 times more sensitive than existing instruments
- An energy resolution of 10 percent
- Rapid slewing in as low as 20 seconds
- Energies as low as 20 GeV
- Energies up to 300 TeV
- A field of view of 4.3 10.5 degrees
- An angular resolution approaching one arcminute


4 -5 orders better than Fermi-LAT

Array configuration (first phase)

Recently INFN Italy won the budget as "post-covid recovery funds" $LST \times 2 + SST \times 5$ will be built in CTA-South. (see later slide)

CTA AND LST TIMELINE

cta

Organization

2023 CTAO ERIC will be founded

North

- 2023-2025 LST2-4 construction.
- 2023-2028 9 MST construction.

South

- 2024-2028 14MST + 37 SST
- 2023-2025 LST5-8 construction?

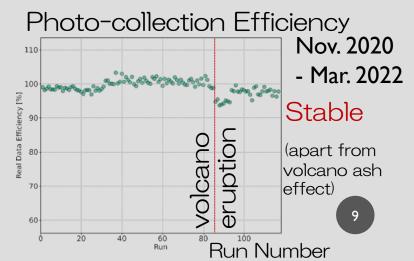
	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
	CTAO gGmbH (Heidelberg)											
Organization				CTAO ERIC (European Research Infrastructure Consortium)								
Alpha Config	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
LST North	Comissioning and Operation of LST1				Operation as 4 LST Array							
LST NOT UT	CDR Deplo			oyment of LS								
MST North	Design ar	nd Finance	INFRA	Construction of 9MSTs				Observatory Operation				
CTA South	Array config, Finance		INI			Construction and Deplyment of 14 MSTs						
CTA South	and CDR				C	Construction and Deployment of 37 SSTs						
Extension	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
LST South		Financ	ce / CDR Construction of 4 LS			STs ???	Operation ???					

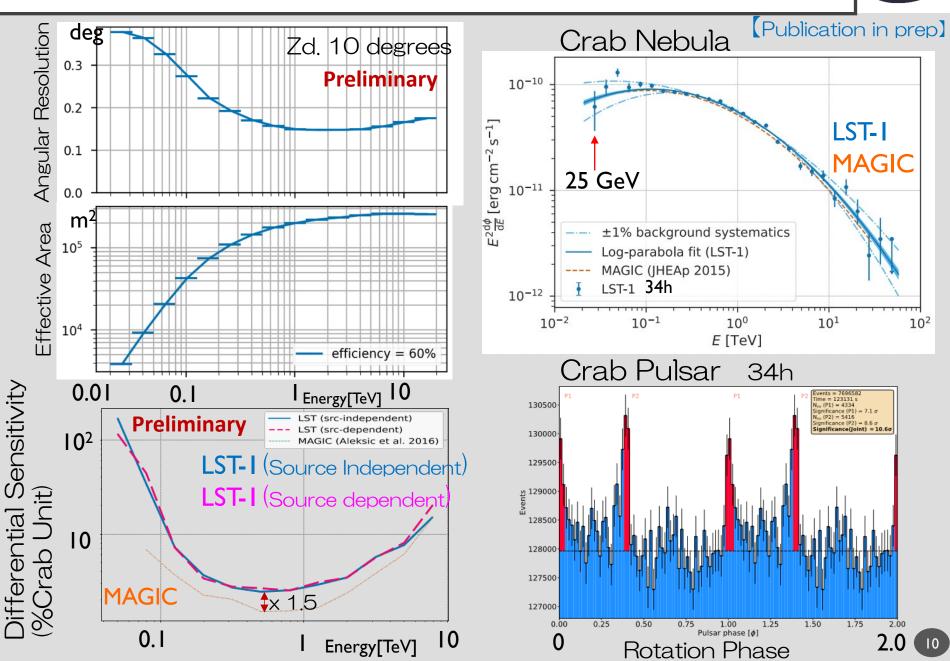
Operation Modes at CTA north -- step by step upgrade --

- 2019 ~: Monoscopic Operation with LST1
 - See the results in later slides.
- 2021 ~ : Joint Observation with LST1 and MAGIC (Offline Stereo Analysys)
- 2023 ~ : Stereo Observation with LST1 and MAGIC (Coincidence Trigger)
- 2025 ~ : Observation with 4 LSTs.

• 2029 ~ : CTA-north array observations (4 LSTs + 9 MSTs).

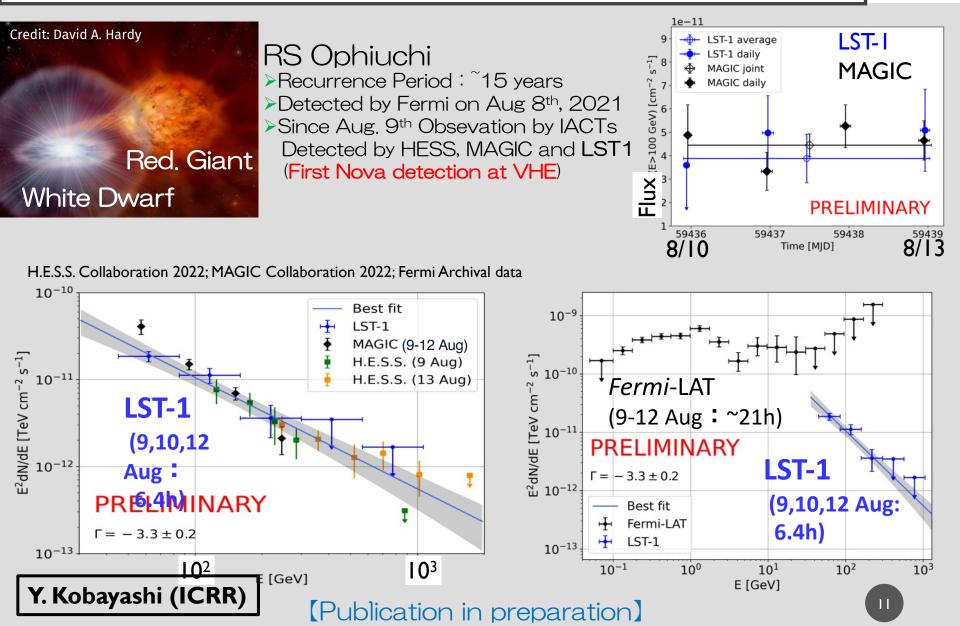
LST1 Operation @LaPalma, Spain



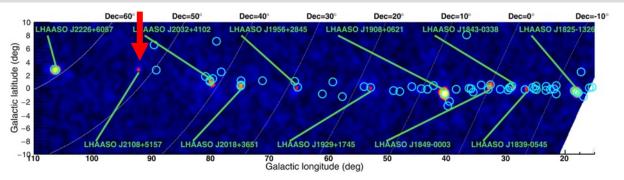

Sci. Operation Since Jan. 2020, > 800 hours

Suspension of operation

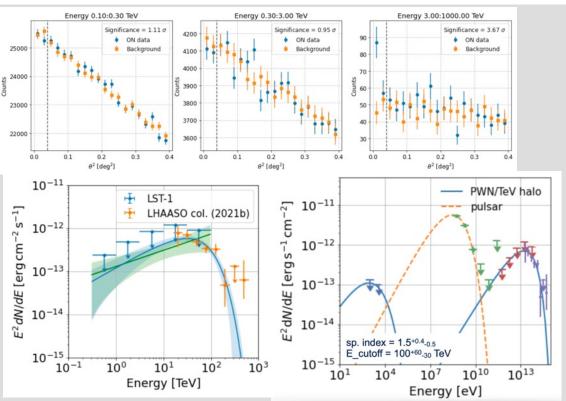
- Mar. Jun. 2020 (COVID-19)
- Sep. 2021 Jan. 2022(Volcano)
- Jul Aug. 2022, (Storage Problem)



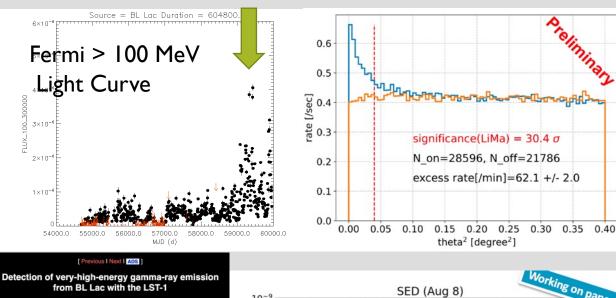
LST-1 Performance and +Crab Obs.



LST-1 Observation : Recurrent Nova



 $\label{eq:constraint} Extended Data Fig. 4 | LHAASO sky map at energies above 100 TeV. The circles indicate the positions of known very-high-energy γ-ray sources.$



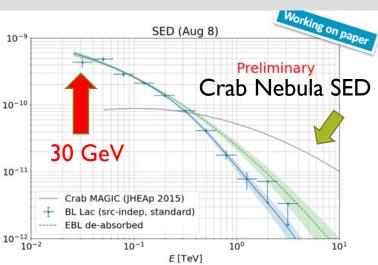
- One of the 12 >100 TeV sources from LHAASO (<u>Nature</u> volume 594, 2021)
- UL on extension: 0.26 deg
- No X-ray counter part
- Possible counter part in GeV, 4FGL
 J2108.0+5155, likely to be a pulsar
- LST1 Observed it in June
 Sep 2021 for 49.3 hours after cuts.
- Only 3.6 sigma > 3 TeV
- Upper Limits constrain the emission model well. PWN TeV halo scenario can explain the emission very well.

LST collaboration, A&A (submitted) https://arxiv.org/pdf/2210.00775.pdf

12

ATel #14783; Juan Cortina for the CTA LST collaboration on 13 Jul 2021; 21:03 UT Credential Certification: Juan Cortina (Juan Cortina @ciemat.es)

Subjects: TeV, VHE, Request for Observations, AGN, Blazar, Transient


Referred to by ATel #: 14820, 14826, 14839

У Tweet

The LST-1 telescope has observed an increase in the very-high-energy (VHE; >100 GeV) gamma-ray flux from BL Lacertae (RA-22:02:43, DEC=x+42:16:40, J2000.0). The preliminary offline analysis of the LST-1 data takken on 2021/0711 (MJD 59460; highgerd by an increase of the optical flux (see ATEL #14773 and references therein), has been detected with a significance of 8 sigma with a differential flux of 1.3 +/ 0.2 10-9 cm-2 s -1 TeV-1 (25% of the Crab Nebula) at 100 GeV. Note though that this is the result of a quicklook analysis and the data were taken under non-optimal weather conditions (atmospheric transmission at 9km of -50-60%), hence this flux measurement is a lower bound on the true flux. The LST-1 observations were performed during commissioning which began in 2018. LST-1 is a prototype of the Large-Sized Telescope for the Cherenkov Telescope Array, and is located on the Canary Island of La Palma, Spain. The LST-1 is designed to perform gamma-ray astronomy in the energy range from 20 GeV to 3 TeV. LST-1 observations on BL Lacertae will continue during the next few highs, multi-wavelength observations are encouraged. The preliminary offline analysis has been performed by Daniel Morcuende (dmorcuen@ucm es) and Ruben Lopez-Coto (hebe locazcodified infini, Nt = LST-1 to the LST-1 to the LST-1 to be reliminary offline analysis has been performed by Daniel Morcuende (dmorcuen@ucm es) and Ruben Lopez-Coto

(ruben.lopezcoto@pd.infn.it). The LST-1 contact persons for these observations are Masahiro Teshima (mteshima@mpp.mpg.de) and Juan Cortina (juan.cortina@ciemat.es).

S. Nozaki, (Kyoto, MPI)

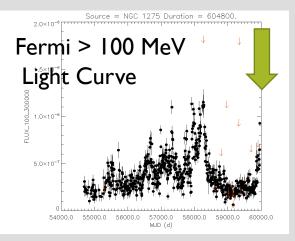
- Historical Flare in optical and gamma-ray reported in Summer 2021
- LST1 Observed it in August 2021.
- Huge signal detected and Atel was sent.
- Brighter than Crab below 300 GeV
- Spectrum measured from <u>30 GeV</u>
- Intra-night variability is also being studied.

[Dedicated Publication in prep]

LST-1 Observation : NGC 1275

[Previous | Next | ADS]

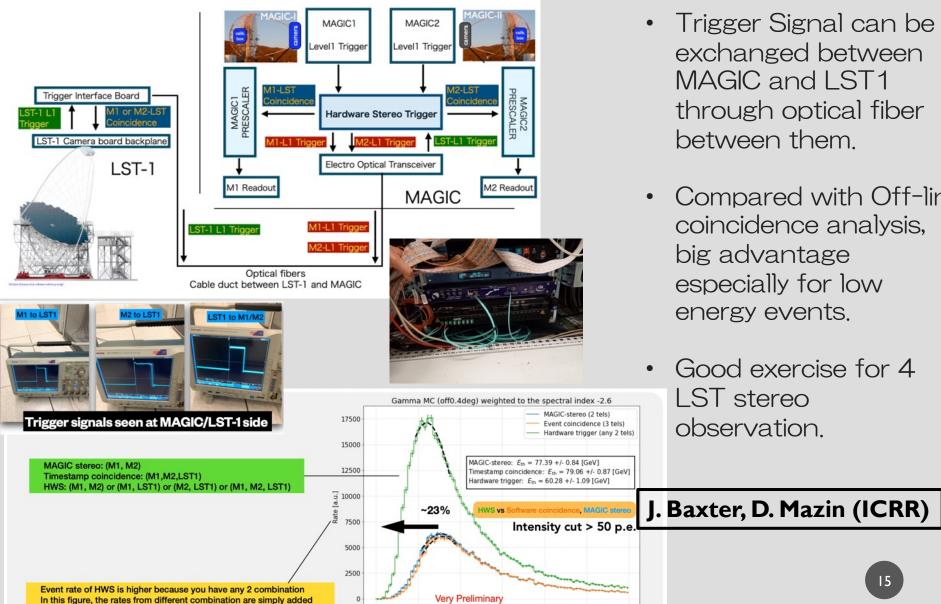
Detection of enhanced very-high-energy gamma-ray emission from the radio-galaxy NGC1275 with the LST-1


ATel #15819; Juan Cortina (CIEMAT) for the CTA LST collaboration on 21 Dec 2022; 22:29 UT Credential Certification: Juan Cortina (Juan.Cortina@ciemat.es)

Subjects: Gamma Ray, TeV, VHE, AGN, Transient

Referred to by ATel #: 15820, 15823, 15852, 15856

У Tweet


The LST-1 telescope has observed an increase in the very-high-energy (VHE; >100 GeV) gamma-ray flux from the radio-galaxy NGC1275 (RA=03:19:48.1, DEC=+41:30:42, J2000.0). The LST-1 observed NGC1275 on the night of December 20 to December 21, 2022 (MJD 59934), triggered by an increase in gamma-ray flux detected by MAGIC and Fermi-LAT. In the preliminary offline analysis of the LST-1 data, NGC1275 has been detected with a significance of more than 10 sigma with an average flux of approximately 3.0 x 10^-10 cm^-2 s^-1 above 100 GeV, i.e. 70% that of the Crab Nebula, varying from 140% to below 30% at the beginning and at the end of the observation, respectively. Note though that this is the result of a quick-look analysis. The LST-1 observations were performed during commissioning which began in 2018. LST-1 is a prototype of the Large-Sized Telescope for the Cherenkov Telescope Array and is located on the Canary island of La Palma, Spain. The LST-1 is designed to perform gamma-ray astronomy in the energy range from 20 GeV to 3 TeV. LST-1 observations on NGC1275 will continue during the next few nights, multi-wavelength observations are encouraged. The preliminary offline analysis has been performed by Chaitanya Priyadarshi (cpriyadarshi@ifae.es) and Seiya Nozaki (nozaki@mpp.mpg.de). The LST-1 contact persons for these observations are Juan Cortina (juan.cortina@ciemat.es), Masahiro Teshima (mteshima@mppmu.mpg.de) and Mireia Nievas (mnievas@iac.es).

- A radio galaxy in Perseus Cluster.
- High activity
 reported in
 December 2022
 (after ~5 years of quiescence state).
- LST1 Observed it and detected a signal with more than <u>10 sigma</u>
- Atel was sent.
- Analysis is on-going

LST-MAGIC Hardware Coincidence Trigger

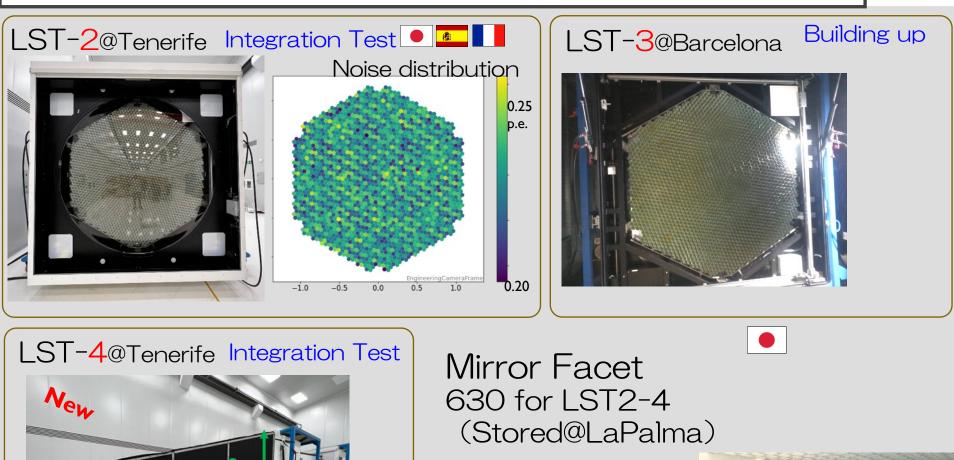
50

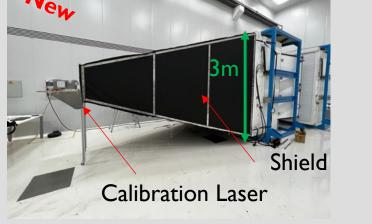
100

150

MC energy [GeV]

200

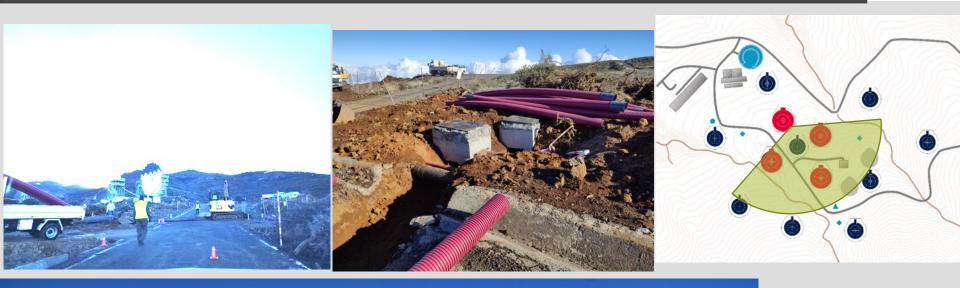

250


300

- Trigger Signal can be exchanged between MAGIC and I ST1 through optical fiber between them.
- Compared with Off-line coincidence analysis. big advantage especially for low energy events.
- Good exercise for 4 LST stereo observation.

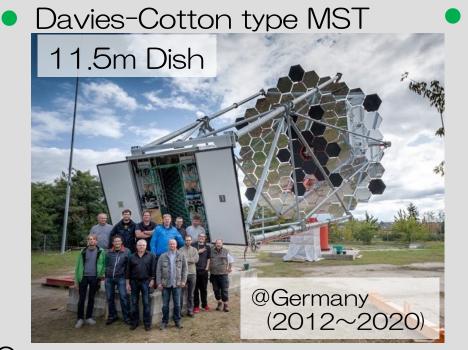
LST 2-4 Preparation Status : Camera and Optics

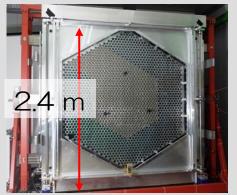
LST 2-4 Preparation Status



Construction Started \Rightarrow LST2-4 to be completed by Early 2025.

LST 2-4 Construction Status

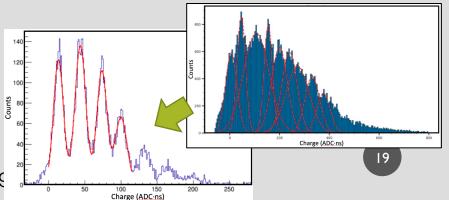




Middle Sized Telescope (MST)Prototype

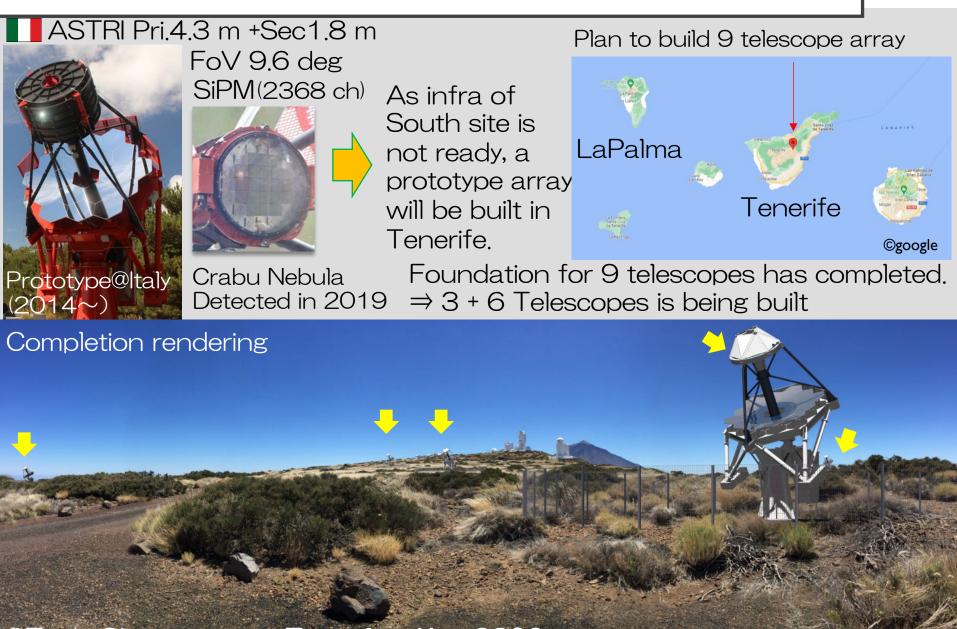


Camera ~1800 PMT



- 1 Camera to LaPalma (2023Q4) ⇒MST1 will be built
- Pathfinder to be built in Paranal (2024)

Two types of readout (digital/analog) (digital one was mounted on HESS-II for test 2019

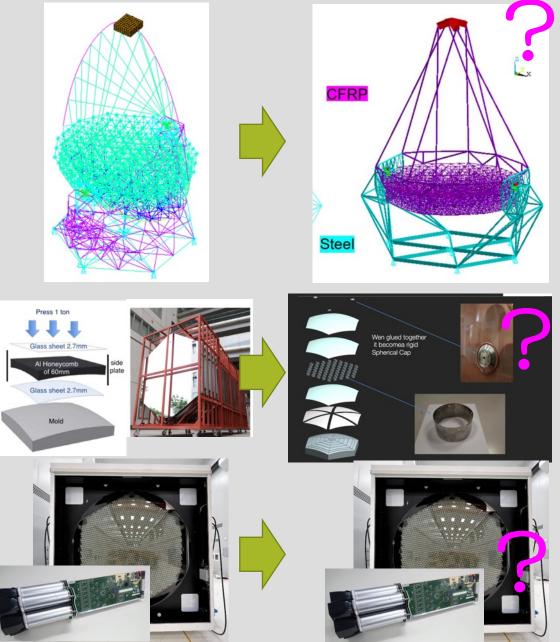


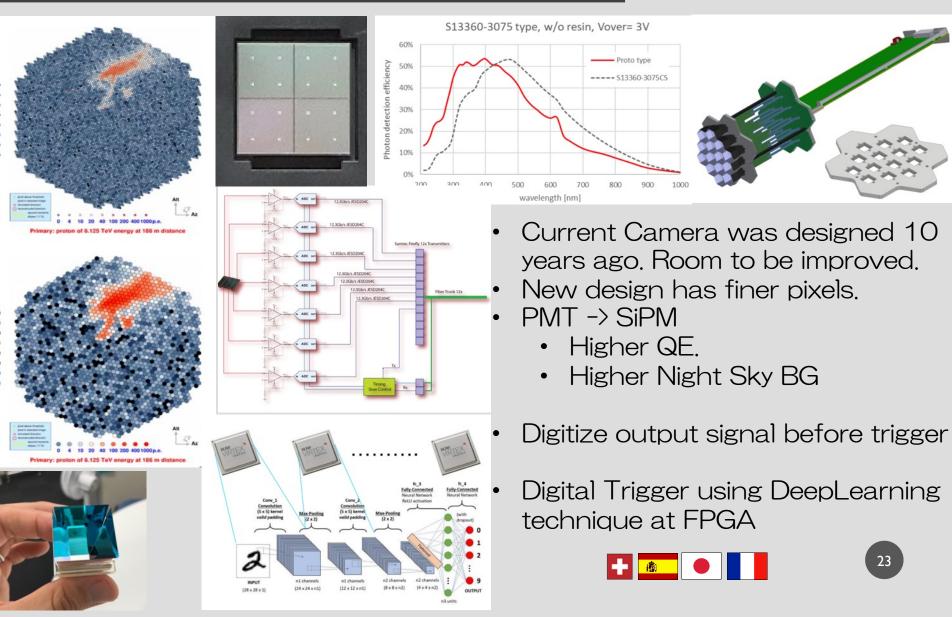
Crab Nebula detected in 2020
 Camera Upgrade (SiPM & readout)

Small Sized Telescope (SST) Prototype

@Teide Observatory in Tenerife Alt.~2300m

credit: Astri mini-array


CTA South Site@Paranal, Chili


LST5-6 (LST South)

- "Post-covid recovery funds" in Italy INFN
- All elements must be delivered by the end of 2025.
- Environmental conditions are different.
 - Earthquake
 - Dust
 - dryness
- Camera -> Bascially a copy of North' s. ?
- Mirror -> to be studied ?
- Structure -> To be modified ? Design study is on going.
- Internal design review is schedued in this month in Rome.

Advanced Camera Development

cta

Summary

Step by Step development of CTA north :

- LST1 Mono observation \Rightarrow Several publications up-coming
 - Performance and Crab Observation
 - Known Blazars
 - BL Lac
 - Recurrent Nova
 - LHAASO J2108
 - Others including technical papers.
 - 2 Atels (BL Lac and NGC1275)
- LST-1 MAGIC joint observation.
 - Regularly performed. Calibration is on-going
 - > Hardware Trigger Exchange is being implemented.
- LST-2,3,4
 - All elements ready.
 - Construction permission has been recently given and construction has started.
 - To be completed by 2025
- MST1-9 joins in 2029
- CTA South
 - Infrastructure is being constructed.
 - Budget for 2 LSTs has been secured. (Italy)
 - Design study is on-going.
- Camera Upgrade R&D for SiPM advanced camera is on-going