

UNIVERSITY

VHE gamma follow-up programs of HE neutrino alerts

Koji Noda (ICEHAP, Chiba U., since Jan 2023)

based on work with Manuel Artero, Armand Fiasson, et al.

6 Feb 2023, CTA Japan workshop

Introduction

- There have been "very natural" suggestions to try to observe both VHE γ and HE v from the same sources
 - as π 's from pp or p γ emits γ if π 0 while ν if π +/-
- Discovery of the astrophysical v's by IceCube in 2013 (See Aya's talk for the efforts in the experiment side)
- v source hunting with gamma-rays
 - Gamma Follow Up (GFU) program with IACTs since 2012
 - Long history. In IceCube, known as the name of the event selection
 - "Too" famous example of IC-170922A / TXS 0506+056
 - "only one example for long time
- The result of the long history
 "The known γ-emitters are NOT the majority of the v-emitters"

Mystery,,,

- Second v-source published in 2022: NGC 1068
 - Seyfert galaxy (not blazar)
 - Detected by Fermi, but not in
 VHE (constrained by MAGIC)
 - Very weak, probably steady
 Much different from TXS 0506
- Possible explanation: e.g., "Both pp & pγ are contributing and a part show pp feature while the other pγ feature"
 - Complex, somehow unnatural, as often the nature indeed is :)
- So, 2 types? more? Let's solve this mystery with IACT,,, but need to observe v directions with "less bias" to γ-emitters

IceCube Coll., Science, **378**, 538-543 (2022)

3

Current *known* situation @ $v \Rightarrow \gamma$ (Cta

- Now only IceCube publishes alerts in realtime
 - Upgoing events at South Pole are from northern sky, matching CTA-N
 - KM3Net and Baikal GVD would start to publish alerts in near future (?) Mostly in the southern sky (??)
- Public alerts (e.g. in GCN Notices)
 - Single tracks (singlet) since 2015
 - Gold / Bronze: former HESE/EHE, reorganized in 2019, only with the probability called "signalness"
 - Gold: horizontal long tracks
 Bronze: more upgoing = from north

K.Satalecka+, PoS(ICRC2021)960

- TXS 0506 was in fact triggered by EHE-170922A (not GFU). Need to continue with the CTA era
- Single cascade alerts since 2021
 - Localization error 3-30 deg Similarity to GW. Collaborative work for source/galaxy selection and tiling needed in CTA & O4+ era

More unknown part: private alerts

(Mostly from K.Satalecka+, PoS(ICRC2021)960)

- Multiple event (multiplet) in time scale of sec 180 days
- Correlation with preselected γ-sources = strong bias to γ
 - Fermi-LAT catalog (3FGL or 3FHL)
 - Extragalactic source with known redshift and $z \le 1.0$
 - 3FGL: variability index > 77.2; 3FHL: variability based on Bayesian blocks > 1
 - Culmination at the IACT site within a chosen zenith angle limit (usually <45°)
 - Assuming that the source can produce a gamma-ray flare with a 10-fold increase over the average *Fermi*-LAT flux, the extrapolated flux above 100GeV has to exceed the IACT 5σ sensitivity for observation times between 2.5 h to 5 h.
 - At least 2 arbitrary numbers (variability 77.2 and flare x10)
 - No EBL attn., so meaning of x10 is different source by source
 - TeVCat
 - Taken probably in 2017, so not fully clear from "all extragalactic sources detected by IACTs, GC, and Crab have been added"
- 120-180 sources per IACT (178 for MAGIC)
- Private automatic email, followed by another email with more detailed analysis by a person in charge (2-3 h later)

LST proposal of improvements

different list of targets depending on IACTs

K.Satalecka+, PoS(ICRC2021)960

We need to provide the same for CTA/LST. Let's improve for future

- Update catalogs (4FGL, recent TeVCat)
- No variability cut (after NGC 1068), if possible
- Redshift info should be included only as the EBL attenuation
- Only one arbitrary number, then it can be tuned to have a practical number of sources (which decide false alarm rate)

Following studies by M. Artero, supervised by A. Fiasson and me

4FGL (instead of 3FGL/3FHL)

- Start from the original 6659
 => 3690 survived the visibility cut at La Palma
- Possible further improvement: seasonal lists?
 - 2816 (874) visible for > (<) 8 months
 - Might be tricky with variable time window (s -180 d)

4FGL: Flux with EBL

- Flux: extrapolation with PL to VHE range, and flux enhanced by x10
- Compared with IACT sensitivity
 => 696 survived
 => 398 known z
- EBL attenuated, compared again with the sensitivity => 110 in the end
 - Tried flux x1, x2,
 x5, but the same
 x10 is the optimal
 - No need for z<1</p>

- Fully cutting sources without z, which are probably far γ emitters
- Variability is not used any more

10

Adding TeVCat sources

- 280 in the original (as of Oct 2022. TeVCat is updated very frequently!)
 179 by visibility
 98 extragalactic (|b| >2.5 deg)
- -7 non-repeating transients (GRB and Nova) => 91
- -46 double-counts
 with 4FGL, -6 duplication (e.g., pulsar & nebula) => 39
- Finally removed (by hand) unIDs, galactic SNR/PWN => 29

LST proposal for y emitters 110+29 = 139 reduced from MAGIC 163+15 = 178

New list of nearby galaxies

- If (some of) v is not from known GeV/VHE γ emitters, what can be done with VHE γ is ONLY to find new (probably dim) γ sources
- "multiplet" mostly from z<0.5, while singlet can be from z~1-3
 => search over nearby galaxies
- Situation is common. E.g., optical telescopes also want to observe as nearby sources as possible.
 But, particularly important for IACT to get involved, due to EBL

- Situations around multiplet are similar to GW signal
 => List of galaxies for GW = GLADE+ catalog
 - It has an entry of BNS rate estimated with the stellar mass
 - Synergies / collaboration with GW-optical astronomers

GLADE+

- 3.2M with the BNS entry
- Distance is not enough to get a reasonable number. Used BNS rate and Bmag, to select those with a high probability of BNS
 - As a typical value, we use NGC 4993 where GW170817 was located (44 Mpc)
 - => 224 galaxies
- => 94 by visibility in La Palma
- => 73 by removing one of two too-close galaxies in the sky

GFU from Glade+

~3.2M

GALAXIES

Thoughts in the LST side

- Surely a room for improvements for the GLADE+ list
 - Cutting too much? Better to search for a factor farther distant sources (44 Mpc ~= z@0.01,,, at least up to 200 Mpc ~= z@0.05?)
 - Need a higher threshold in multiplet search only for this channel?...
 - Better to observe alerts from this list for a longer time than the γbased list, as we somehow know that it is probably dim in γ
 - Need to revise also the followup observation strategy, but a bit tricky to do so within a single alert channel?...
 - Anyway, we LST proposed 212 sources to IceCube
 - 110 from 4FGL with revised methods, for GeV γ emitters
 - -29 from TeVCat, for known (bright) VHE γ emitters
 - 73 from GLADE+, nearby galaxies with a high BNS rate
 - Compared with MAGIC, -22% for γ, while +19% with GLADE+
 - At least, no practical problem for the work load of analyses by human

Summary

- Let's solve the mystery of HE neutrino emitters by IACTs
- The current follow-up has only 1 success (?) of v- γ correlation
 - but by a public alert of a single event. NOT by the private alert of correlation between v multiple events and preselected γ -source list.
 - Too low number to conclude what is the main v-emitters...
- Can be due to the private alert construction. We should improve it for CTA/LST, so proposed a revised list to IceCube
 - Improving the selection criteria of γ-sources, reducing the bias to γ
 - Adding another list of nearby galaxies
- Discussions started in IceCube. Let's see how Iong it will take for me to be an IceCuber :)

