The extreme Universe viewed in very-high-energy gamma rays 2022

Gamma-ray Emission from Primordial Black Holes

Detections of GWs from binary PBHs collide? https://www.youtube.com/watch?v=1agm33iEAuo

-0.76s

GW150914 with 30M_o binary BHs

Energy fraction of PBHs to CDM (f_{PBH})

Abstract

- PBHs are good candidates for dark matter with masses of $10^{17} 10^{23} \text{ g}$.
- By future MeV-gamma-ray observations, we will test the PBH dark matter for m= 10¹⁷ g
- The large curvature perturbation simultaneously predicts the possibility of 2ndary GWs at around 0.01 – 0.1 Hz to verify the PBH dark matter scenario with m = 10¹⁷ g
- By using the GeV-TeV gamma-ray observations, we can constrain possible bursts of PBHs to be a fraction of CDM

What is a PBH?

Primordial Black Hole (PBH)

 $1M_{\odot} \sim 2 \times 10^{33} g$

• Inflation origin fluctuations (large at small scales)

δ >> 10⁻⁵

• Different from astrophysical BHs

Density perturbation

The attraction of primordial black holes (PBHs) 1M_•~2×10³³g

- Possible sources of LIGO-Virgo-KAGRA binary merging gravitational waves (~> 30M_•)
- Currently-evaporating PBH with *m=10¹⁵g* is constrained by *GeV- gamma-rays*
- A good candidate of dark matter (10¹⁷-10²³g)
- Seeds of supermassive BHs (SMBHs) (10⁴M_o-10⁵M_o)
- Future MeV gamma ray observations hint at quantum gravity
- Verification of large quantum fluctuations on small scales created by inflation
- Simultaneously predicts the possibility of secondary generated background gravity waves (GWs)

PBH formations in Radiation dominated (RD) Universe

Zel'dovich and Novikov (1967), Hawking (1971), Carr (1975) Harada, Yoo and KK (2013)

Gravity > pressure gradient (Jeans instability)

 $\delta > \delta_c \sim p / \rho \sim c_s^2 = w = 1/3$ Black Hole δ A closed universe immediately collapsing into a BH $H^{-1} = (a/k)$ wave number

P_{ζ} (k) and PBH abundance β (M)

 Fraction of PBH to the total with Press Schechter(or Carr's) formalism
 For Peak Statistics,

e.g., see Yoo, Harada, KK et al (2018)(2020)

$$\beta(M) \equiv \frac{\rho_{\rm PBH}(M)}{\rho_{\rm tot}} = \int_{\delta_{\rm th}}^{\infty} d\delta \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\delta^2}{2\sigma^2}\right) = \operatorname{erfc}\left(\frac{\delta_{\rm th}}{\sqrt{2\sigma}}\right)$$
$$\frac{\sigma \sim \delta\rho/\rho}{\sigma^2}$$

For analytical derivations, see Harada, Yoo, KK (2013) 0.43

• Relation between β and fluctuation σ (or β and $\Omega)$

Typical quantities of PBHs in RD

• Mass (horizon mass = $\rho(t_{form}) H(t_{form})^{-3}$)

$$M_{PBH} \sim \rho(\mathcal{H}_{form}^{-1})^{3} \sim M_{pl}^{2} t_{from} \sim \frac{M_{pl}^{3}}{T_{form}^{2}} \sim 10^{15} g \left(\frac{T_{form}}{3 \times 10^{8} GeV}\right)^{-2} \sim 30 M_{\odot} \left(\frac{T_{form}}{40 MeV}\right)^{-2}$$

Lifetime

$$\tau_{_{\mathrm{PBH}}} \sim \frac{\mathcal{M}_{_{\mathrm{PBH}}}^3}{\mathcal{M}_{_{p/}}^4} \sim 4 \times 10^{17} \sec \left(\frac{\mathcal{M}_{_{\mathrm{PBH}}}}{10^{15} g}\right)^3 \sim 3 \times 10^{68} \mathrm{yrs} \left(\frac{\mathcal{M}_{_{\mathrm{PBH}}}}{30 \mathrm{M}_{_{\odot}}}\right)^3$$

• Hawking Temperature

$$T_{\rm PBH} \sim \frac{M_{pl}^2}{M_{\rm PBH}} \sim 10 {
m MeV} \left(\frac{M_{\rm PBH}}{10^{15}g}\right)^{-1} \sim 1 \times 10^{-9} {
m K} \left(\frac{M_{\rm PBH}}{30 M_{\odot}}\right)^{-1}$$

• Fraction to CDM

$$f_{\rm fraction} \equiv \frac{\Omega_{PBH}}{\Omega_{CDM}} \sim 10^{18} \left(\frac{M_{PBH}}{10^{15} {\rm g}}\right)^{-1/2} \sqrt{P_{\delta}} \exp\left[-\frac{1}{18 P_{\delta}}\right]$$

Formations of PBHs in the inflationary Universe

- A blue-tilted perturbation with large running α_s and running-of-running β_s
- Tachyonic instability (mass² < 0)
- Ultra-slowroll inflation (V' \sim 0)?

Type-III Hilltop inflation models German, Ross, Sarkar (01) Kohri, Lin and Lyth (07)

Potential in supergravity, e.g.,

$$V(\phi) = V_0 + \frac{1}{2}m^2\phi^2 - \lambda \frac{\phi^p}{M_{\rm P}^{p-4}} + \cdots$$

Large running spectral index

Kohri, Lin and Lyth (07)

Spectrum

$$P_{\zeta} \sim \frac{V}{m_{\rm pl}^4 \varepsilon}$$

• Enhanced curvature perturbation at small scales due to a large running of running $1 \left(\frac{V}{V} \right)^2$

$$\varepsilon \equiv \frac{1}{2} \left(m_{\rm pl} \frac{V'}{V} \right)^2 \to 0 \text{ for } \phi \downarrow$$

$$\beta_s = \frac{d^3 P_{\zeta}}{d(\ln k)^3} = 192\epsilon^3 + 192\epsilon^2\eta - 32\epsilon\eta^2 + (-24\epsilon + 2\eta)\xi^{(2)} + 2\sigma^{(3)}$$

Could be large!

Curvature perturbation P_ζ(k)

Motions on the potential of the Higgs-scalaron, two-fields system

Dhong Yeon Cheong, Kazunori Kohri, Seong Chan Park, arXiv:2205.14813 [hep-ph]

Primordial Black Holes and Second Order Gravitational Waves from Tachyonic Instability induced in Higgs-R² Inflation

Dhong Yeon Cheong, Kazunori Kohri, Seong Chan Park, arXiv:2205.14813 [hep-ph]

Black hole evaporation by the Hawking process

Finding a PBH in the Hawking process of evaporation with gamma rays

S.W. Hawking, 1974

牧晃司、東大理物理修士論文(1995)より

Emission rates by Hawking radiation

Emission rate

$$d\dot{N}_{s} = \frac{dE}{2\pi} \frac{\Gamma_{s}}{e^{E/T_{BH}} - (-1)^{2s}}$$

• Γ_s: Grey-body factor

J. H. MacGibbon and B. R. Webber, Phys. Rev. D 41, 3052 (1990)

Detecting gamma rays

GeV

MeV

Fermi

Evaporating PBHs through Hawking Process

Carr, Kohri, Sendouda and Yokoyama (2010,2021)

$$\mathrm{d}\dot{N}_s = \frac{\mathrm{d}E}{2\pi} \frac{\Gamma_s}{e^{E/T_{\mathrm{BH}}} - (-1)^{2s}}$$

PBH burst?

HAWC observation for PBH bursts

A. Albert, et al, the HAWC collaboration, arXiv:1911.04356 [astro-ph.HE]

$$\dot{
ho}_{
m PBH} < 3400^{+400}_{-100}~{
m pc}^{-3}~{
m yr}^{-1}$$
See Kanamori-kun's talk

Burst duration	Burst Rate Upper Limit
0.2 s	$3300 + 300 - 100 \text{ pc}^{-3} \text{yr}^{-1}$
$1 \mathrm{s}$	$3500 \stackrel{+400}{-200} \mathrm{pc}^{-3} \mathrm{yr}^{-1}$
$10 \mathrm{~s}$	$3400 \stackrel{+\bar{4}\bar{0}\bar{0}}{-100} \mathrm{pc}^{-3} \mathrm{yr}^{-1}$

Experiment	Burst Rate Upper Limit	Search Duration	Reference
Milagro	$36000 \text{ pc}^{-3} \text{yr}^{-1}$	1 s	[27]
VERITAS	$22200 \ { m pc}^{-3} { m yr}^{-1}$	$30 \ s$	[19]
H.E.S.S.	$14000 \ { m pc}^{-3} { m yr}^{-1}$	$30 \ s$	[14]
Fermi-LAT	$7200 \text{ pc}^{-3} \text{yr}^{-1}$	$1.26 \times 10^8 \text{ s}$	[20]
HAWC 3 yr.	$3400 \ { m pc}^{-3} { m yr}^{-1}$	$10 \mathrm{s}$	This Work

Secondary induced gravitational wave

Secondary gravitational wave induced from large curvature perturbation ($P_{7} >> r$) at small scales

K. N. Ananda, C. Clarkson, and D. Wands, 2006 D.Baumann, P.J.Steinhardt, K.Takahashi and K.Ichiki,2007 R.Saito and J.Yokoyama, 2008 KK and T.Terada, 2018 R.-G. Cai, S. Pi, and M. Sasaki, 2019

• Power spectrum of the tensor mode

$$\langle h_{\boldsymbol{k}}^{r}(\eta)h_{\boldsymbol{k}'}^{s}(\eta)\rangle = \frac{2\pi^{2}}{k^{3}}\mathcal{P}_{h}(\boldsymbol{k},\eta)\delta(\boldsymbol{k}+\boldsymbol{k}')\delta^{rs}, \qquad h_{ij}(\boldsymbol{x},\eta) = \int \frac{\mathrm{d}^{3}\boldsymbol{k}}{(2\pi)^{3/2}}e^{i\boldsymbol{k}\cdot\boldsymbol{x}}\left[h_{\boldsymbol{k}}^{+}(\eta)\mathrm{e}_{ij}^{+}(\boldsymbol{k}) + h_{\boldsymbol{k}}^{\times}(\eta)\mathrm{e}_{ij}^{\times}(\boldsymbol{k})\right]$$

• Omega parameter well inside the horizon

$$\Omega_{\rm GW}(k,\eta) = \frac{1}{3} \left(\frac{k}{\mathcal{H}}\right)^2 \mathcal{P}_h(k,\eta).$$

• Substituting the solution into this $\Omega_{GW,c}(f) = \frac{1}{12} \left(\frac{f}{2\pi a H} \right)^2 \int_0^\infty dt \int_{-1}^1 ds \left[\frac{t(t+2)(s^2-1)}{(t+s+1)(t-s+1)} \right]^2 \times \overline{I^2(t,s,k\eta_c)} \mathcal{P}_{\zeta} \left(\frac{(t+s+1)f}{4\pi} \right) \mathcal{P}_{\zeta} \left(\frac{(t-s+1)f}{4\pi} \right)$

Primordial Black Holes and Second Order Gravitational Waves from Tachyonic Instability induced in Higgs-R² Inflation

Dhong Yeon Cheong, Kazunori Kohri, Seong Chan Park, arXiv:2205.14813 [hep-ph] See also, K. Kohri and T. Terada, arXiv:2009.11853

Conclusions

- PBHs are good candidates for dark matter with masses of $10^{17} 10^{23} \text{ g}$.
- By future MeV-gamma-ray observations, we will test the PBH dark matter for m= 10¹⁷ g
- The large curvature perturbation simultaneously predicts the possibility of 2ndary GWs at around 0.01 – 0.1 Hz to verify the PBH dark matter scenario with m = 10¹⁷ g
- By using the GeV-TeV gamma-ray observations, we can constrain possible bursts of PBHs to be a fraction of CDM