

Exploring the role of cosmic rays in galaxies with high energy signatures

The extreme Universe viewed in VHE gamma rays 2022

Ellis R Owen

JSPS Fellow

Theoretical Astrophysics Group, Osaka University

erowen@astro-osaka.jp

ellisowen.org

Outline

- Introduction
 - Galactic and circum-galactic ecosystem
 - Cosmic ray origins, interactions and feedback
- Types of signatures
 - Outflows and X-rays (messo-physical/thermodynamic)
 - Extragalactic gamma-ray background (microphysical)
- New opportunities in the CTA era

1. Feedback in galaxy evolution

Galaxy formation/evolution

- Galaxy self-regulation (feedback) mainly modelled thermally/mechanically; some treatment of radiation SNe/AGN etc.
- Picture not yet complete, massive, highly star-forming or high-z galaxies presenting particular problems opportunities

What causes the downfall of star-formation after cosmic noon; particularly very rapid quenching seen in massive galaxies? (>300 billion Msun)

Galaxy formation/evolution

- Galaxy self-regulation (feedback) mainly modelled thermally/mechanically; some treatment of radiation SNe/AGN etc.
- Picture not yet complete, massive, highly star-forming or high-z galaxies presenting particular problems opportunities

Galaxy formation/evolution

- Galaxy self-regulation (feedback) mainly modelled thermally/mechanically; some treatment of radiation SNe/AGN etc.
- Picture not yet complete, massive, highly star-forming or high-z galaxies presenting particular problems opportunities

Hidden players

- A missing ingredient in our galaxy evolution/feedback models
- Renewed search for hidden players controling baryon cycles in/around galaxies; drivers and mediators of galaxy growth

Checklist for a feedback agent

- Are they present?
- □ Are they powerful enough?
- Are there suitable physical channels for them to deliver feedback?

Cosmic rays?

2. Cosmic rays as a feedback agent

Cosmic rays as a feedback agent?

Gamma-ray luminosity is a proxy for cosmic ray luminosity (later)

Impressions of feedback "mechanisms"

Ionization, "collisional" processes

Scattering/energy & momentum transfer via magnetic fields

Hadronic interactions

Dynamical

1. **Moves** something with CR (non-thermal) pressure

2. Movement / flow disrupts system in some way

Important in ecosystem regulation, gas supply

Indirect impacts & larger scales?

Hadronic interactions (pp dominates over p-gamma in galactic settings)

In a uniform hot, magnetized, ionized ISM

Molecular cloud hierachical configuration

	Size / pc	Denisty / cm ⁻³
- Cloud	~1-10	~ 50-500
- Clump	~1	10 ³ -10 ⁴
– Filament	~0.1 (wide)	10 ⁴ -10 ⁵
– Core	~0.05-0.1	>10 ⁵

(Arzoumanian+2011)

Thermalization of secondary electrons in galactic components

(Credit: Michelle Kao 2022; U Waterloo)

Thermalization focussed in molecular clumps; not efficient in hot ionized medium or cores

Impressions of feedback "mechanisms"

Ionization, "collisional" processes

Scattering/energy & momentum transfer via magnetic fields

Hadronic interactions

Targeted; dense and ionized regions

Direct impacts & smaller scales?

Dynamical

1. **Moves** something with CR (non-thermal) pressure

2. Movement / flow disrupts system in some way

Important in ecosystem regulation, gas supply

Indirect impacts & larger scales?

Messo-physics and astrophysics

Explored in simulations

Hopkins+ 2021; FIRE-2 simulations

Zoom simulations - Projected, edge-on; later-forming massive halo + disk

+CRs (**pressure** & heating)

Colour bar: flow velocity (thermal gas)

Inflowing

Outflowing

MHD

Messo-physics and astrophysics

Explored in simulations

Hopkins+ 2021; FIRE-2 simulations

SFR suppressed; less "bursty"

3. High-energy signatures of cosmic ray feedback

Dynamical driving

X-ray emission from an outflow

Hot gas; M82 like configuration

X-ray emission from an outflow

Level of cosmic ray driving modifies the thermal gas properties

X-ray emission from an outflow

Broadband ratios to track cosmic ray driving in outflows

• Fewer photons

(Yu, Owen+2021)

• Reach more & more distant systems (XRISM, or *Athena?*?)

Re-cap: gamma-ray production

Hadronic interactions (pp dominates over p-gamma in galactic settings)

Gamma-ray emission from starbursts

The gamma-ray background

10 years of Fermi-LAT E>10 GeV

NASA/Fermi-LAT collaboration

The extragalactic γ -ray background

• Star-forming galaxies could dominate (Roth+2021; Owen+2021b)

EGB spectrum

Galaxies can contribute a few tens of percent (depends slightly on CR spectrum in sources; also works by Ambrosome+2021)

Source population distribution

Intensity distribution; imprints at a preferred (peak) angular scale

EGB anisotropies

Redshift evolution imprints spatial signature in EGB

4. New opportunities in the CTA era

Individual galaxies

With LHAASO, SWGO + CTA, Gamma-ray spectra of more nearby galaxies

- (1) Improved knowledge of **particle transport**
- (2) Exact relationship between **cosmic ray engagement** in a galaxy, energy deposition and star-formation

Galaxy populations

Gamma-ray background anisotropies in the CTA era (KSP 8?)

Thoughts on what we can do better?

- (1) Higher angular resolutions, so detailed anisotropy signatures more accessible, so better redshift information
- (2) Access higher multipoles for wider redshift range
- (3) More data at **higher energies**, containment/feedback in galaxy populations (Ambrosone+2022)

Outflows

Gamma-ray + X-ray constraints on mass-loading to discern driving physics

Outflows

Clump survival changes flow dynamics

Dense phase dominates gamma-ray pion decay emission from an outflow

Preliminary

(Schneider+2021)

Outflows

Gamma-ray emission is sensitive to the magnetic field strength/structure in flow
Combined constraints from X-rays and gamma-rays can unveil their influence
New altitude profiles in gamma-rays for nearby starburst outflows to tune models

Summary

- Still need to resolve the hidden players controlling galaxy evolution
- Cosmic rays are a viable agent with thermal and dynamical impacts for a galaxy and its CGM
- We can already test some aspects of their feedback impact
- Many next and exiting prospects exist in the next decade with CTA (+ X-ray instruments like XRISM, Athena+?)
- Now is the time to start refining and extending models in advance of the wealth of up-coming high-energy data

