Prospects for Observations of Jetted and Unjetted AGNs with LST

CTA-Japan Meeting @ Kashiwa, 2023-02-07

Yoshiyuki Inoue

Contents

Introduction Jetted AGN Science Unjetted AGN Science Summary

Main aims of AGN studies

imaginary picture of AGN

- Blazar (~0.1% of AGNs)
 - Jet property

- Radio galaxy (~10% of AGNs)
 - Link between accretion and jet

- Seyfert (~90% of AGNs)
 - Accretion process

See Vovk's talk for the cosmological aspect

Jetted AGN Science

Blazars Jet pointing toward the Ea

- Highly variable $\Delta t \sim 1 \, \text{day}$
- Non-thermal emission from radio to gamma
- Two spectral bumps
- Luminous blazars tend to have lower peak energies (Fossati+'98, Kubo+'98, Donato+'01, Ghisellini+'17)

Multi-Wavelength Blazar Spectra Radio to Gamma-ray (and even neutrino) data is available now

10²⁸

BL Lacs emissions up to VHE/TeV

FSRQs GeV cutoff (w/ VHE flares)

Why Gamma-ray for Blazars? **Energetic, Variable, Highest energy**

- Energetic
 - Dominated by gamma-ray
- Variable
 - >x10 variability
- Highest energy
 - Energy frontier in photons

Blazar Gamma-ray Emission Mechanism Leptonic? Hadronic?

- Leptonic scenario
 - Synchrotron Self-Compton (SSC)
 - Jones, O'Dell, & Stein '74; Maraschi, Ghisellini, & Celotti '92
 - External Compton (EC)
 - Dermer & Schlickeiser '93; Sikora, Begelman, & Rees '94
- Hadronic scenario
 - Proton synchrotron, Photomeson
 - Mannheim '93; Aharonian '00; Mücke & Protheroe '01

Smoking Gun Event: TXS 0506+056 **Discovery of the first ever neutrino associated blazar** log(Frequency [Hz]) original GCN Notice Fri 22 Sep 17 20:55:13 UT 10 10 12 20 16 22 24 26 28 18 14 refined best-fit direction IC170922A 9 IC170922A 50% - area: 0.15 square degrees 10^{-10} IC170922A 90% - area: 0.97 square degrees 8 Counts/Pixe 6 10^{-11} 5 Eermi-LAT TXS 0506+056 CU 3 E₂ dN/dE [erg 0 10⁻¹² **⊙ ⊙** PKS 0502+049 3FHL 3FGL $\mathbf{0}$ 10^{-13} **77.2**° 77.6° **76.8**° **76.4**° **78.0**° 78.4° **Right Ascension** INTEGRAL (UL) Archival SARA/UA VERITAS (UL) Swift UVOT VLA Fermi-LAT HAWC (UL) **OVRO** ASAS-SN AGILE —— Neutrino - 0.5yr --- Neutrino - 7.5yr 10^{-14} Kanata/HONIR Ó Swift XRT MAGIC Kiso/KWFC H H NuSTAR — H.E.S.S. (UL) 10^{-3} 10¹² 1015 100 10³ 10^{6} 10^{9} 10^{-6} Energy [eV] IceCube 2018

Theoretical Interpretation

• Pure hadronic model is ruled out because too much X-rays

- Hadronic component is subdominant (e.g., Keivani+'18;Cerruti+'18;Gao+'18,,,,).
- Hard X-ray and MeV gamma-ray data will be also important.

10⁻¹⁴

Where is the Gamma-ray Emission Region? Toward the understanding of the energy dissipation process

Torus

0

Ramos-Almeida & Ricci '17

- >pc scale
- BLR region
 - > sub-pc scale
- Accretion disk
 - sub-pc scale

Blazar Emission Region? >pc region???

- Gaia (optical) emission 200 locates ~20-50 pc away 100 from the VLBI (radio) 50 **VG** (pc) **COR**? (Plavin, Kovalev, Petrov '19) 20
- Lack of broad-line region photon attenuation signature in GeV? (Costamante+'18)

Spectral determination by LST will pin down the emission region.

10

5

2

-90

Blazar Emission Region? <pc region???</pre>

- Fast variabilities ~200 s (Aharonian+'07, Albert+'08)
 - Very compact emitting region?
- Closer region?
 - Jet-in-Jet (Giannios+'09) ?
 - Jet-Star interaction (Khangulyan+'13)?

JET

Photon statistics by LST will probe the smallest scale in the jet

Gamma-ray Emission from Large-Scale Jets Spatial Extension of Cen A Seen by Fermi and H.E.S.S.

Gamma-ray Emission from Large-Scale Jets Spatial Extension of Cen A Seen by Fermi and H.E.S.S.

HESS region is WHITE circle.

Unusual Spectral Hardening in the Cen A Spectrum LST/MST mapping would help us to understand jet kinematics.

- Spectral hardening by the kpc jet?
- Diffuse jet should be weakly magnetized $\eta_B \sim 10^{-2}$ (Sudoh, Khangulyan, & YI '20)

Unjetted AGN Science

Multi-wavelength spectrum of Unjetted AGNs **Thermal emission dominates.**

- If unjetted AGNs are gamma-ray/neutrino sources,
 - we should see non-thermal EM emission.
- BUT, in unjetted AGNs,
 - thermal emission is everything "so far".
- Where is non-thermal signature?

cm-mm spectrum of AGN core A case of IC 4329A

- Hybrid (thermal + non-thermal) corona model (YI & Doi '14)
- Non-thermal electron fraction
 - 0.03 (fixed)
 - Consistent with the MeV gamma-ray background spectrum (YI, Totani, & Ueda '08; YI+'19)
- Non-thermal photon index: 2.9
- Size: 40 r_s
- B-field strength : 10 G

High energy emission from AGN coronae Multi-messenger Signature: MeV Gamma-ray & TeV Neutrinos

- MeV emission
 - but, no GeV emission
- Protons would be accelerated simultaneously
 - Generation of high energy neutrinos
- See also Begelman+'90; Stecker+'91, '92, '05, '13; Kalashev+'15; Murase+'20; Gutiérrez +'21; Kheirandish+'21

Evidence for neutrino emission from NGC 1068

NGC 1068: a cosmic obscured accelerator

November 3, 2022

Elisa Resconi | IceCube Collaboration

24

How can we test the model? ALMA? ngVLA? FORCE? COSI-X? GRAMS? AMEGO? CTA? IceCube-Gen2? KM3Net? XRISM?

mm-excess

MeV PL tail

TeV v without GeV-TeV v Nuclear spallation in X-ray

We see GeV-TeV gamma rays from NGC 1068 Simultaneous obs. of ALMA, Fermi, CTA, & IceCube will be the key

v: Corona y. Corona (Screen) IceCube 4FGL 3FHL MAGIC

 10^{15} 10^{16}

- We can not expect GeV-TeV gamma from AGN corona
 - because of internal γγ attenuation
- GeV TeV gamma rays should be from outside of corona
 - starburst activity or disk wind

AGN Failed Wind? (S. Inoue+'22) Interaction between Accretion Flows and Disk Winds

S. Inoue +'22

e +'22

Reconnection Driven Flare (Takasao Flare)? A possible scenario for the radio galaxy IC 310 flare event?

Accretion

Takasao +'19

- 3D MHD simulation reveals a large reconnection flare for protostars (Takasao+'19)
 - Later, confirmed for SMBH systems (Porth+'21)
- Rough energetics estimate

$$E_{\rm flare} \approx f \frac{B^2 L^3}{8\pi}$$

$$\approx 10^{47} \operatorname{erg}\left(\frac{f}{0.1}\right) \left(\frac{B}{10^4 \text{ G}}\right)^2 \left(\frac{L}{3R_s(10^8 M_{\odot})}\right)^2$$

Probing Magnetically-Arrested Disks (MAD) by CTA? Gamma-ray emission from MAD in nearby radio galaxies

Kimura & Toma '20

- MAD accumulates B-field for jet launch (e.g., Narayan+'03)
- RIAF-type MAD may produce hadronic signatures (Kimura & Toma '20; Kuze+'22)
- How to discriminate from jet / wind / corona?

Probing MAD by XRISM and Athena Zeeman Splitting Effect on the Fe Kα Line

- Emission line will be split under strong magnetic field.
- MAD will split the Fe Kα line.

Summary

- Gamma-ray production processes in blazars are well understood now.
 - Leptonic dominant & hadronic sub-dominant for the TXS 0506+056 case
- Low-energy threshold, Large collection area, Fast slewing capability of LST will probe
 - Energy dissipation region in the jet
 - Jet energy distribution process in a galaxy
 - Origin of high-energy emission in unjetted AGNs
 - Disk accretion dynamics through reconnection process